
1/19

Burrows-Wheeler’s transform

The transform itself does not give any compression, but makes it easier
to code the data with a simple coder.

Suppose that we want to code a sequence of length n.

Form all cyclic shifts of this sequence and sort them.

Send the last symbol in each row as a sequence L and the position of the
original sequence in the sorted list.



2/19

Example

Suppose that we want to code the sequence bacabba. We form all cyclic
shifts and sort them:

Cyclic shifts Sorted cyclic shifts
bacabba
abacabb
babacab
bbabaca
abbabac
cabbaba
acabbab

abacabb
abbabac
acabbab
babacab
bacabba
bbabaca
cabbaba

The original sequence is found on row 4. The information that is sent is
thus the position 4 and the sequence bcbbaaa.



3/19

Implementation issues

When implementing BWT, it’s not necessary to actually form all cyclic
shifts. Instead keep the sequence in a circular buffer, form an array of all
starting positions and then sort this array.

If we use a general sorting algorithm, we can run into problems when we
get long sequences of the same symbol. The comparisons will then take a
long time. One solution to this problem is to do runlength coding of the
sequence before doing the BWT coding.

Another solution is to exploit the fact that the strings to be sorted are
not arbitrary strings, but cyclic shifts. The sorting algorithm can then be
tailor made for this situation. See for instance Burrows’ and Wheeler’s
original article for an example of such a sorting algorithm.



4/19

Properties

Consider the matrix with sorted sequences, A, and the matrix, As we get
if we shift all sequences cyclically one step to the right, so that the last
symbol ends up in the first position

A As

abacabb
abbabac
acabbab
babacab
bacabba
bbabaca
cabbaba

babacab
cabbaba
bacabba
bbabaca
abacabb
abbabac
acabbab

All sequences in A starting with a certain letter are in the same order as
they are in As . Equivalently, if we consider all sequences in A starting
with the same letter, then the suffixes are in the same order as the
prefixes of the sequences ending with that letter.



5/19

Decoding BWT

This property, which is a result of having sorted cyclic shifts, makes it
possible for us to decode the transform, even though we don’t have
access to all of A.

The sequence we have received, L, is the last column of A. By sorting L
we get the first column, F , of A. The letter at position k in F is the one
appearing after (circularly) the letter at position k i L.



6/19

Decoding BWT, cont.

If we for our example write L and F next to each other we get

L F
b a
c a
b a
b b
a b
a b
a c

After b number 1 we have a number 1, after c we have a number 2, after
b number 2 we have a number 3, after b number 3 we have b number 1,
after a number 1 we have b number 2, after a number 2 we have b
number 3 and after a number 3 we have c .



7/19

Decoding BWT, cont.

Given the recevied sequence L and the sorted first column F we can thus
create a vector T to help us order the symbols in L in the correct order.
T [i ] points to the index in L where the symbol appearing after L[i ] is
located. Ie, in the decoded sequence L[i ] is followed by L[T [i ]] which in
turn is followed by L[T [T [i ]]], et c.

The coded index I tells us where the sequence begins.

In our example we get T = [4 5 6 0 2 3 1]. At position 0 in L we
have b number 1 which is followed by a number 1 which can be found at
position 4 in L. At position 1 in L we have c which is followed by a
number 2 which can be found at position 5 of L, et c.

It’s not necessary to actually create F and then sort it. Instead we can
just count how many times each letter appears in the sequence and then
for each letter in the alphabet, in order, we put the positions in L for that
letter into T .



8/19

Decoding BWT, cont.

An algorithm for decoding can thus be described in pseudo code as the
following, where we have created the vector T from L and F :

k = T [I ]

D[0] = L[k]

for j = 1 to n − 1
{

k = T [k]
D[j ] = L[k]

}

The decoded sequence is now in D.



9/19

Alternative decoding BWT

The decoding can also be performed backwards, if we let T [i ] point to
the position in L for the symbol appearing before L[i ]. This is equivalent
to saying that T [i ] is the position in F where L[i ] is located.

In our example we get T = [3 6 4 5 0 1 2].

The decoding algorithm becomes:

k = I

D[n − 1] = L[k]

for j = n − 2 downto 0
{

k = T [k]
D[j ] = L[k]

}



10/19

Compression

We still haven’t done any compression, rather the opposite, since we
besides the sequence also must send a position.

L will be partially sorted, which can be utilized for compression. One way
is to use move-to-front coding (mtf).

Start by listing the symbols in some order. For each symbol to be coded
we send the index to that symbol, then we place that symbol first in the
list. This will (assuming that the list is indexed from 0) give us long runs
of zeros, and small values will be more common than large values.

We still haven’t done any compression, but the new sequence of indices
will have a distribution skewed towards small values, which can be
utilized by for instance a Huffman coder or an arithmetic coder. It is also
common to do runlength coding of the zeros.



11/19

Example

Original text (all whitespace have been replaced by ):

Vi CARL, med Guds n̊ade, Sveriges, Götes och Vendes Konung
&c. &c. &c., arvinge till Norge, hertig till Schleswig Holstein,
Stormarn och Ditmarsen, greve till Oldenburg och Delmenhorst &c.

&c., göre veterligt: att, sedan Riksens Ständer enhälligt antagit och
fastställt den successionsordning, varefter den högborne furstes,
Svea rikes utkorade kronprins, hans kungl. höghet prins JOHAN
BAPTIST JULII manliga bröstarvingar skola äga rätt till den
svenska tronen, samt Sveriges rikes styrelse tillträda, och denna
grundlag till Vårt n̊adiga gillande blivit överlämnad, have Vi, i
kraft av den enligt 85 § i regeringsformen Oss tillkommande
rättighet, velat denna av Riksens Ständer samtyckta
successionsordning härmed antaga, gilla och bekräfta, alldeles
s̊asom den ord för ord härefter följer:



12/19

Example

L (the last letter of the sorted cyclic shifts):

snsea.an.sdeiLantgtcccccl8 rtHBC O LTI RUA
J AA I PSJ : ...tgtNihhd,gsTsllnnvl,ss,,thel,dt,:
atheavrmtlthrnherd,a,a,,,,dgn.,§iesI,stgnsa,tnrtisaae,r,rsnanseeggtseas
,,e5attgdnggnlegtklnrrltt ssdlmmh gvmmt fl h g n&&&&&uucc
ooooooSyaeerräe̊ananl l nnn̊anrrudgvdnddgvsrvmmsrrrtbvd
DrsnmddddddVm ddssvjtdtdvvgtvhgtdtgklkcclhhvr saäee
nninriaaiiänörneiiiö an niii cccccc ggcnn VV
wtldrrtlllrrRRtttttggttennvvrrrssgvDllsiislt eiic gllllllodlel
Oehnrnlböliiiiiiiaäiäieeollrom rt rrloäaaieeeaeereeennmeaa
ääeuroiuiiiuieeddaeeeoiieeaeooaao kHskrriiKk ss
Ntfbhn eeeeöeaokooooöaä yguoee eppeeoäoaotkaoůaegaatk
beennennndeeeese l rkkgssn ånnOeerölra t e tegsgmg
flarietifknnssffesört uiS lsaäämssSSssGrnkbf aa aeS
sSSö rristt rr htltthhrrnnVshhffgrG



13/19

Example

Consider for example the start of the sequences ending with c:

., arvinge till Norg

., göre veterligt: a

. &c., arvinge till

. &c., göre veterlig

. &c. &c., arvinge t
cessionsordning, var
cessionsordning härm
essionsordning, vare
essionsordning härme
h Delmenhorst &c. &c
h Ditmarsen, greve t
h Vendes Konung &c.
h bekräfta, alldeles
h denna grundlag til
h fastställt den suc
hleswig Holstein, St
kta successionsordni



14/19

Example

Sequence after mtf-coding:

95 0 0 0 0 115 111 1 103 100 51 1 4 2 4 103 5 107 83 7 7 116 107 1 106
0 0 0 0 111 68 13 116 5 85 80 81 5 0 0 0 0 0 91 1 13 96 88 3 0 0 95 97
86 3 91 1 0 2 0 1 0 5 1 0 0 0 0 0 0 95 97 5 3 0 83 1 27 0 0 16 21 1 96
25 110 0 28 74 6 30 18 1 26 0 28 0 118 2 6 4 0 1 0 11 9 31 5 4 10 5 2
15 31 3 7 7 3 9 29 114 6 10 1 7 4 12 2 8 3 11 11 10 1 1 1 0 0 0 2 14 7
17 4 167 17 9 16 23 5 2 13 9 9 3 11 5 5 4 12 2 9 6 6 0 9 7 6 1 1 4 7 5 1
2 5 0 8 0 8 3 3 5 2 7 0 3 85 4 5 0 6 13 8 2 0 1 15 7 3 5 115 4 5 11 0 2 4
0 22 12 0 9 4 18 0 18 5 0 10 19 4 0 8 4 114 7 2 0 0 7 1 0 7 1 11 75 0 0
0 0 119 0 38 0 117 0 0 0 0 0 29 122 20 20 0 19 0 228 2 229 11 5 1 15 13
0 0 0 0 1 1 0 2 0 0 4 1 7 0 12 20 15 20 2 5 1 0 3 3 21 6 2 21 0 3 3 0 0
21 119 5 7 103 5 6 9 8 5 0 0 0 0 0 110 2 13 0 3 0 5 0 8 120 11 4 1 1 3 0
12 3 2 24 3 3 4 1 2 26 17 1 24 0 2 6 0 7 14 11 11 19 21 21 0 4 0 0 17 0
29 1 7 2 6 0 1 0 6 4 246 5 2 7 5 0 0 4 7 0 7 5 2 0 1 4 0 0 2 12 0 0 0 0 0
1 0 0 14 0 2 4 0 3 0 0 0 19 0 1 0 124 17 16 18 13 0 3 3 0 0 2 0 42 0 3 0
0 0 0 10 0 1 0 14 10 0 17 0 6 0 0 17 0 6 3 22 9 0 4 15 0 1 2 9 13 0 10 5
0 15 3 9 6 0 0 0 0 0 28 14 2 7 1 44 2 21 15 15 1 5 ...



15/19

Example

0 50 100 150 200 250
0

20

40

60

80

100

120

−50 0 50 100 150 200 250
0

50

100

150

200

250

Histogram before mtf Histogram after mtf

In this exemple we have a sequence of length 790. The longer the
sequence, the higher the compression.



16/19

Compression of test data

world192.txt alice29.txt xargs.1

original size 2473400 152089 4227
pack 1558720 87788 2821
ppmd 374361 38654 1512
paq6v2 360985 36662 1478
compress 987035 62247 2339
gzip 721413 54191 1756
7z 499353 48553 1860
bzip2 489583 43202 1762

pack is a memoryless static Huffman coder. compress uses LZW. gzip
uses deflate. 7z uses LZMA. bzip2 uses BWT + mtf + Huffman coding.



17/19

Compression of test data

The same data as the previous slide, but with performance given as bits
per symbol. A comparison is also made with some estimated entropies.

world192.txt alice29.txt xargs.1

original size 8 8 8
pack 5.04 4.62 5.34
ppmd 1.21 2.03 2.86
paq6v2 1.17 1.93 2.80
compress 3.19 3.27 4.43
gzip 2.33 2.85 3.32
7z 1.62 2.55 3.52
bzip2 1.58 2.27 3.33
H(Xi ) 5.00 4.57 4.90
H(Xi |Xi−1) 3.66 3.42 3.20
H(Xi |Xi−1,Xi−2) 2.77 2.49 1.55



18/19

Tunstall codes

A Tunstall code is a code where all the codewords have the same number
of bits, but where the number of source symbols that are coded with
each codeword varies between the codewords.

Set a codeword length n (maximum 2n codewords).

The elements in the code book are strings of symbols from the alphabet.

Start with a code book consisting of the L symbols in the alphabet.

In each step, remove the most probable element in the code book and
replace it with the L strings gotten when concatenating the element with
each of the L symbols. Calculate the probabilities for the new elements.



19/19

Tunstall coding, cont.

In each step we increase the codebook size with L− 1, so we can do this
k times, where k is the largest integer such that

L + k(L− 1) ≤ 2n

Give each element in the codebook a codeword with n bits.
The elements in the codebook are leaves in an L-ary tree, so we can
calculate the average depth d̄ (symbols/codeword) of this tree. Since
each codeword has n bits, the average data rate R is

R =
n

d̄
[bits/symbol]

Tunstall codes are usually a little worse than Huffman codes. They work
ok when the alphabet is small, but they are very impractical when you
have a large alphabet.


