Differential entropy

A continuous random variable X has the probability density function
f(x). The differential entropy h(X) of the variable is defined as

h(X) = — /_ " F(x) - log (x) dx

Unlike the entropy for a discrete variable, the differential entropy can be
both positive and negative.

Translation and scaling
h(X + ¢) = h(X)

h(aX) = h(X) + log ||
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Differential entropy, cont.

The gaussian distribution is the distribution that maximizes the
differential entropy, for a given variance. le, the differential entropy for a
variable X with variance ¢? satisfies the inequality

1
h(X) < 5 log 2meo?
with equality if X is gaussian.

If we instead only consider distributions with finite support, the
differential entropy is maximized (for a given support) by the uniform
distribution.



Quantization

Suppose we do uniform quantization of a continuous random variable X.
The quantized variable X is a discrete variable. The probability p(x;) for
the outcome x; is approximately A - f(x;), where A is the step size of the
quantizer. The entropy of the quantized variable is
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Differential entropy, cont.

Two random variables X and Y with joint density function f(x, y) and
conditional density functions f(x|y) and f(y|x). The joint differential
entropy is defined as

h(X,Y) /f (x,y)-log f(x,y) dxdy

The conditional differential entropy is defined as

HXIY) = = [ (x.) -tog F(xly) dboy
Conditioning reduces the differential entropy
h(X[Y) < h(X)

We have
h(X,Y) = h(X)+ h(Y|X)=h(Y)+ h(X]Y)



Differential entropy, cont.

The mutual information between X and Y is defined as

1(X;Y)= /f(x,y)-logm dxdy

which gives

1(X;Y)=h(X)—=h(X]Y)=h(Y)—h(Y|X)=h(X)+ h(Y)—h(X,Y)
We have that /(X; Y) > 0 with equality iff X and Y are independent.
Given two uniformely quantized versions of X and Y

I(X;Y) = H(X)—H(X|Y)
~ h(X)—logA — (h(X]Y)—logA)
1(X;Y)



Coding with distortion
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If we remove the demand that the original signal X and the decoded
signal X should be the same, we can get a much lower rate R. The
downside is of course that we get some kind of distortion.



Distortion

There are many distortion measures to use. When the signal alphabet is
the real numbers, the most common measure is the mean square error.
Given an original sequence x;,i = 1,..., n and the corresponding decoded
sequence X;, i = 1,..., n the distortion is then

,Z xi— )2

If we have a random signal model, with original signal X; and decoded
signal X;, the distortion is then

E{(X; — X)) = / F(x R)(x — X)2dxR



Rate-distortion function

The rate-distortion function R(D) gives the theoretical lowest rate R (in
bits/sample) that we can ever achieve, on the condition that the resulting
distortion is not larger than D.

For a memoryless stationary continuous random source Xj, the
rate-distortion function is given by

R(D) = min 1(Xi; Xi)
f(R]x):E{(Xi—X;)2}<D

The minimization is performed over all conditional density functions
f(X|x) for which the joint density function f(x, &) = f(x) - f(X|x)
satisfies the distortion constraint.

Note that we don't have a deterministic mapping from x to X.



Gaussian source

If the source is a memoryless gaussian source with zero mean and
variance o2, the rate-distortion function is

llog‘ﬁ 0<D<o¢?
R(D) = 2 D = =
(D) {0 D > o2

Short proof:

If D > o2 we choose X; = 0 with probability 1, giving us 1(X; )A() =0
and thus R(D) = 0.

If D < o2 we have

I(X;X) = h(X)—h(X|X)=h(X)—h(X—X|X)
> h(X) = h(X = X) = h(X) = h(N(0, E{(X = X)*}))
= %Iog 2mec? — % log 2meE{(X — X)?}
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Gaussian source, cont.

We have thus shown that

o2

R(D) > 5 Iog )

Now we find a distribAution that achieves the bound. )
Suppose we choose X ~ N(0,0% — D) and Z ~ N(0, D) such that X
and Z are independent and X = X + Z. For this distribution we get
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Gaussian source
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R(D) for a memoryless gaussian source with variance 1. As D tends
towards 0, R(D) tends towards infinity.



Multiple independent gaussian sources

Suppose we have m mutually independent memoryless gaussian sources
with zero mean and variances 2. Each source has a rate-distortion
function R;(D;). We want to find the rate-distortion function for all
sources at once, ie given a total maximum allowed distortion

D =", D;, what is the lowest total rate R = > 1" | R;?

The problem of finding the rate-distortion function is reduced to the
following optimization

R(D) :ngli Zmax{ IogD 0}

to find the optimal allotment of bits to each component.

Lagrange optimization gives that, if possible, we should choose the same
distortion for each component. The distortion for component i/ can never
be larger than the variance % though.



Multiple independent gaussian sources

The rate-distortion function is thus given by.

where

and X is chosen so that " | D; = D.

This is often referred to as “reverse water-filling”. We choose a constant
A and only describe those components that have a variance larger than .
No bits are used for the components that have a variance less than \.



Multivariate gaussian source

Suppose we have an m-dimensional multivariate gaussian source X with
zero means and covariance matrix C.

1 1
———exp(—=x' C'x)
v/ (2m)m(C| 2
The rate-distortion function is found by doing reverse water-filling on the
eigenvalues s; of C

f(x) =

where

and X is chosen so that " | D; = D.



Gaussian source with memory

For gaussian sources with memory, we do reverse water-filling on the
spectrum. Each frequency can be seen as an independent gaussian
process.

The auto-correlation function of the source is
Rxx (k) = E{Xi - Xit«}

and the power spectral density is the Fourier transform of the auto
correlation function

®(0) = F{Rxx(k)} = i Rxx (k) - e 7270k

k=—o00



Gaussian source with memory

The rate-distortion function is then given by.

1/2 1. o
R(D) = / max{ - log (9),0} do
~1/2 2 A

where
1/2
D :/ min{\, ®(0)} db
—1/2

The integration can of course be done over any interval of size 1, since
the power spectral density is a periodic function.



Gaussian sources
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R(D) for an ideally bandlimited gaussian source (red), compared to the
R(D) for a memoryless/white gaussian source (blue). Both sources have

variance 1.



Non-gaussian sources

For other distributions, the rate-distortion function can be hard to
calculate. However, there are upper and lower bounds.

Given a stationary memoryless random source X with variance o2, the
rate-distortion function is bounded by

h(X)— LlogoreD < R(D) < L1 o
——lo e — log —
p 08TEE = = 2%
For a gaussian source, both bounds are the same.
For a laplacian source we get
1 o2 1 1 o?
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Real coder

How far from the theoretical rate-distortion are we if we do practical
coding?

Suppose we have a memoryless gaussian signal. The signal is quantized
with a uniform quantizer and the quantized signal is then source coded.

For uniform quantization, the distortion is approximately
A2

D~ —

12

Under the assumption that we do a perfect entropy coding of the
quantized signal, the data rate is

R = H(X) = h(X)—log A~ h(X) —log V12D
1 1 Tec?
= Zlog2mes? —logV12D = = |
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Discrete sources

For discrete alphabets, the mean square error might not be a suitable
distortion measure. A common distortion measure is the Hamming
distorsion, defined by

N 0 if x=%
(%) _{ 1if x#%
Given an original sequence x;,i = 1,..., n and the corresponding decoded
sequence X;,i = 1,...,n the distortion is then

1 n
= du(xi, X
n; 1 (xi, X7)

The Hamming distortion between the two sequences is thus the relative
proportion of positions in which they differ.



Rate-distortion function

For a memoryless stationary discrete random source X; and using the

Hamming distortion measure, the rate-distortion function is given by
R(D) = min 1(Xi; Xi)

P(R]x): 22, P(x)-P(R]x)-du(x,R) <D

The minimization is performed over all conditional probability

distributions p(X|x) for which the joint probability distribution

p(x, %) = p(x) - p(X|x) satisfies the distortion constraint.



Bernoulli source

Given a Bernoulli source (ie a memoryless binary source with probabilities
p and 1 — p for the two outcomes) and using Hamming distortion as the
distortion measure, the rate-distortion function is given by

H — Hy(D if 0<D<min{p,1—
R(D):{ 0b(p) b(D) f D>min{p,1{fp} P}

where Hy(q) is the binary entropy function
Hy(q) = —q-logq — (1 — q) - log(1 - q)

Note that if we require D = 0, the lowest possible rate is equal to the
entropy rate of the source.



Bernoulli sources

R(D) for Bernoulli sources with p = 0.5 (blue) and p = 0.75 (red).



Real coder

Suppose we have a Bernoulli source. Assume, without loss of generality,
that p>1—p, ie p > 0.5.
Let the coder keep a fraction 0 < k < 1 of symbols. Code the symbols
that are kept with a perfect source coder and discard the rest.
The decoder will decode the symbols that the coder kept and set the rest
to 0 (the most probable value). On average, the fraction of incorrectly
decoded symbols will be (1 — k)(1 — p), which is equal to the distortion
D, ie

1-k)(1-p)=D = k—1—L

( p) = =1-1
The rate of the coder, assuming that the source coder achieves the
entropy bound is

R= ko) = (1 12 ) - (o)

which is a straight line between (0, Hp(p)) and (1 — p,0).



Real coder

Performance of our real coder compared with the rate-distortion function
for p = 0.5 (yellow/magenta) and p = 0.75 (blue/red).



