
1/84

Colour images

When coding images we usually don’t use the RGB colour space. Instead
the image is described in another colour space, where the pixel values are
given using a luminance (or luma) component (called Y), that tells us
how bright the pixel is (ie basically a grayscale signal) and two
chrominance (or chroma) components (called Cb and Cr) that tells the
actual colour of the pixel.

The chrominance components can often be downsampled to a lower
resolution, without a human observer noticing any reduction in image
quality.

There are many variants of luminance-chrominance colour spaces, but
they are rather similar to each other.
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RGB to YCbCr

Suppose that ER , EG and EB are analog values between 0 and 1 that
describe how much red, green and blue there is in a pixel (given eight bit
quantization we have ER = R/255, EG = G/255 and EB = B/255). A
typical conversion to luminance-chrominance is then given by EY = 0.299 · ER + 0.587 · EG + 0.114 · EB

ECb = −0.169 · ER − 0.331 · EG + 0.500 · EB

ECr = 0.500 · ER − 0.419 · EG − 0.081 · EB

where EY is between 0 and 1 and ECb and ECr are between -0.5 and 0.5.
Conversion to 8-bit integer values are then done by Y = 219 · EY + 16

Cb = 224 · ECb + 128
Cr = 224 · ECr + 128
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Example
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Example, RGB

Colour components: R, G and B

As grayscale images
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Example, YCbCr

Colour components: Y, Cb and Cr

As grayscale images
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Example

Image where Cb and Cr have been downsampled a factor 2 both
horizontally and vertically, ie half of the image information has been
removed.
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Example

Image where Y, Cb and Cr have been downsampled a factor
√

2 both
horizontally and vertically, ie half of the image information has been
removed.
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Transform coding, introduction

Consider pairs of samples from a speech signal.
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Consecutive sampels are strongly correlated. If we quantize the samples
scalarly, the quantizer for both sampels must be able to handle large
variations in the signal values. If we instead describe the pairs in a new
basis (another coordinate system) we remove the dependance between
the samples and make it easier to do scalar quantization.
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Transform coding, introduction

New basis vectors: 1√
2
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Now we can use different quantizers for the different coordinates, and
only one of the quantizers needs to handle large signal values. This will
mean that we can get a more efficient coding (lower rate at the same
distortion, or lower distortion at the same rate).
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Transform coding

1. Split the signal into blocks of size N (or N × N if the signal is
twodimensional). Transform the blocks using a suitable, reversible
transform to a new sequence.

2. Quantize the transform components.

3. Use some kind of source coding on the quantized transform
components (fixed length coding, Huffman, arithmetic coding et c.)
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Linear transforms

Block of N samples from the signal {xn}N−1n=0 are transformed to a block
{θn}N−1n=0

θn =
N−1∑
i=0

an,i · xi

All the components of x have the same statistics (variance et c.) but the
components of θ will have different statistics, depending on position n.

The inverse transform, that recreates {xn} from {θn} is given by

xn =
N−1∑
i=0

bn,i · θi
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Matrix description

The transform and the inverse transform can be written in matrix form as

θ̄ = A · x̄ ; x̄ = B · θ̄

where

x̄ =


x0
x1
...

xN−1

 ; θ̄ =


θ0
θ1
...

θN−1


and the matrix element at position (i , j) is given by

[A]i,j = ai,j ; [B]i,j = bi,j

The matrices A and B are the inverses of each other, ie B = A−1.
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Orthonormal transforms

We are usually only interested in orthonormal transforms, ie transforms
where B = A−1 = AT .

Orthonormal transforms are energy preserving, ie the sum of the squares
of the transformed signal is equal to the sum of the squares of the
original signal

N−1∑
i=0

θ2i = θ̄T θ̄

= (Ax̄)TAx̄

= x̄TATAx̄

= x̄T x̄ =
N−1∑
i=0

x2i

Parseval’s identity
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The transform as a basis change

The transform can be seen as describing the signal in another basis, ie as
a linear combination of new basis vectors

x̄ = AT θ̄

=

 a00 · · · aN−1,0
...

. . .
...

a0,N−1 · · · aN−1,N−1


 θ0

...
θN−1


= θ0

 a00
...

a0,N−1

+ . . .+ θN−1

 aN−1,0
...

aN−1,N−1


The rows of the transform matrix (or the columns in the inverse
transform matrix) are the basis vectors of the new basis.
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Properties

Some desirable properties of the transform

I The transform should concentrate the signal energy to as few
components as possible.

I The transform should decorrelate the transform components, ie if
possible we want E{θi · θj} = 0, i 6= j . This means that we remove
all dependance (memory) between the transform components.

I The transform should be robust with respect to changes in source
statistics.

I The transform should be simple and fast to calculate.

All of these properties can not be found in one transform.
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The Karhunen-Loève-transform (KLT)

The KLT is a transform that will completely decorrelate the transform
components and also give maximal energy concentration.

Assuming we have an input signal that is modelled as a stationary
random process Xn with mean zero and auto correlation function
RXX (k) = E{XnXn+k}. Given a block size of N, we have signal vectors

x̄ =


Xn

Xn+1

...
Xn+N−1


The correlation matrix RX is the matrix

RX = E{x̄x̄T}
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KLT, cont.

The correlation matrix can be expressed using the auto correlation
function

RX =


RXX (0) RXX (1) · · · RXX (N − 1)
RXX (1) RXX (0) · · · RXX (N − 2)

...
...

. . . · · ·
RXX (N − 1) RXX (N − 2) · · · RXX (0)


The correlation matrix Rθ of the transformed signal, given a transform A,
is given by

Rθ = E{θ̄θ̄T} = E{Ax̄(Ax̄)T} = ARXAT

If we want the transform to decorrelate the signal, ie diagonalize Rθ (all
values zero except for the main diagonal), we should choose the basis
vectors (rows of A) as the normalized eigenvectors of RX .
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KLT, cont.

For a KLT, the variances of the transform components will be equal to
the eigenvalues of the signal correlation matrix.

In addition to decorrelating the source, the KLT will also be the transform
that gives the maximum energy concentration to a few transform
components. This is the same as saying that the KLT is the transform
that minimizes the geometric mean of the transform component variances

(
N−1∏
i=0

σ2
i )1/N

A disadvantage of the KLT is that it is signal dependent, so it has to be
transmitted as side information. There is usually also no fast way to
perform the transform.
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The discrete cosine transform (DCT)

The transform matrix C is given by

[C]ij =


√

1
N ; i = 0

√
2
N cos (2j+1)iπ

2N ; i = 1, . . . ,N − 1

The DCT is a close relative of the discrete fourier transform (DFT).
There are fast ways of doing a DCT, in the same way that there are fast
fourier transforms (FFT).

The DCT will usually be very close to a KLT for sources where there is a
high correlation between consecutive samples, which includes most
natural audio and image sources.

The DCT is the most commonly used transform in image and video
coding. For instance it is used in the JPEG and MPEG standards.
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The discrete Walsh-Hadamard transform

A Hadamard matrix HN of size N = 2k is given by

HN =

(
HN/2 HN/2

HN/2 −HN/2

)
where H1 = 1.

The transform matrix in DWHT is a Hadamard matrix, normalized with a
factor 1/

√
N. Usually the rows of the matrix are sorted in frequency

order.

Since the transform matrix, apart from the normalizing factor, only
contains ±1, the transform is easy to calculate.

However, the DWHT does not give very good energy concentration, and
since the basis vectors are very “square”, any quantization errors will be
very visible or audible.
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DCT and DWHT

Basis vectors for 8-point DCT and DWHT
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DCT and KLT

Basis vectors for 8-point DCT and a KLT adapted to one of the audio
signals used in lab 2.
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Twodimensional signals

For a twodimensional signal (eg an image) we take blocks of size N × N
to transform.

In general we can view this block as a vector of N2 samples and use a
transform matrix of size N2 × N2.

Usually a separable transform is used. We then consider the block as a
matrix X instead of a vector. A onedimensional transform is applied first
to the rows of X and then to the columns (or the other way, the order
will not matter). The resultat is a matrix Θ of transform components

Θ = AXAT

The inverse transform is given by

X = ATΘA
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Twodimensional signals

We can view the block X as a linear combination of new basis matrices
αij given by

αij = āT
i āj

where āi and āj are the i :th and j :th rows of A.

X =
N−1∑
i=0

N−1∑
j=0

[Θ]ij · αij

A separable transform can always be written as a general transform
applied to a vector of N2 elements, but the reverse is not true.
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Basis matrices for an 8× 8 DCT
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Block size

How should we choose the block size N?

A large N will give better concentration of the energy, but the transform
will be more complicated to calculate. It will also be harder to adapt the
coder if the source has different statistics in different parts (eg foreground
and background in an image or different parts of a music signal). Large
transforms can also give rise to more noticable quantization errors.

Typical block size for image coding is 8× 8 pixels (JPEG, MPEG, DV)

Typical block sizes for audio coding are 256-2048 samples (Dolby Digital,
MPEG AAC, Ogg Vorbis)
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Distortion

For orthonormal transforms the distortion in the transform domain will be
the same as the distortion in the signal domain.

Assume that we quantize and reconstruct the transform vector to θ̂ and
inverse transform to the reconstructed vector x̂. The distortion is then

D =
1

N
||x̄− x̂||2 =

1

N
(x̄− x̂)T (x̄− x̂)

=
1

N
(AT θ̄ − AT θ̂)T (AT θ̄ − AT θ̂)

=
1

N
(θ̄ − θ̂)TAAT (θ̄ − θ̂)

=
1

N
(θ̄ − θ̂)T (θ̄ − θ̂) =

1

N
||θ̄ − θ̂||2

The same reasoning also applies for random signals, with expectation.
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Zonal coding

In zonal coding (or zonal sampling) we split the transformed vector (or
block) into a number of parts (zones). All coefficients in the same zone
are coded using the same quantizer and the same source coder.

If we have K zones and zone j has Nj coefficients, we of course have
N1 + N2 + . . .+ NK = N.

Given that zone j has the rate Rj bits/sample, the average rate R for the
whole coder is

R =

∑K
j=1 Nj · Rj

N

The zone division, quantization and source coding can be fixed for all
blocks, or they can be changed when needed. This gives us a better
possibility to adapt the coder to a varying signal, but it also means that
we get more side information to transmit.



29/84

Quantization, zonal coding

From now on, assume that we let each transform coefficient be its own
zone (ie all Nj = 1) and that we keep the coders fixed and don’t switch
coders between blocks.

Transform component k is quantized and coded to Rk bits, with a
resulting distortion Dk . Assuming fine quantization, the distortion can be
approximated by

Dk ≈ ck · σ2
k · 2−2Rk

We want to find the bit allocation that minimizes the average distortion

D =
1

N

N−1∑
k=0

Dk ≈
1

N

N−1∑
k=0

ck · σ2
k · 2−2Rk

under the condition that the average rate is fixed

R =
1

N

N−1∑
i=0

Rk
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Bit allocation, zonal coding

For simplicity we assume that all transform components have the same
type of distribution and that we use the same type of quantization and
source coding. Then all ck are equal. Lagrange optimization gives (see
Sayood for details)

Rk = R +
1

2
log2

σ2
k

(
∏N−1

i=0 σ2
i )1/N

Note that this can give some components a negative rate. In that case
we set the rate for those components to 0, and redo the bit allocation for
the other components, such that the average rate is still R.

For some types of quantization and coding (Lloyd-Max quantization,
quantization followed by fixed length coding) we might have the
condition that rates should be integers.
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Distortion, zonal coding

For optimal bit allocation the distortion for each component (given that
our fine quantization assumption still holds) is

Dk ≈ c · σ2
k · 2−2Rk =

= c · σ2
k · 2

−2R−log2
σ2k

(
∏N−1

i=0
σ2
i
)1/N =

= c · σ2
k ·

(
∏N−1

i=0 σ2
i )1/N

σ2
k

· 2−2R =

= c · (
N−1∏
i=0

σ2
i )1/N · 2−2R

We will thus get the same distortion for each transform component. The
average distortion will of course also take this value.
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Bit allocation

Another variant is to iteratively give a bit at a time to the component
that has the highest current distortion (calculate new distortion when we
increase the rate for a component) until we reach the desired average
rate.

For practical applications (especially at low rates) there is often no simple
expression for how the distortion depends on the rate, and the bit
allocation might be a little more complicated.
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Transform coding gain

One way of measuring how good a certain transform is, is the transform
coding gain. The transform gives the average distortion and signal to
noise ratio

Dt =
1

N

N−1∑
i=0

Di , SNRt = 10 · log10

σ2
x

Dt

where σ2
x is the variance of the original signal.

Coding without transform to the same rate gives distortion Do and signal
to noise ratio SNRo . The transform coding gain is the difference

SNRt − SNRo = 10 · log10

Do

Dt
≈ 10 · log10

σ2
x

(
∏N−1

i=0 σ2
i )1/N

The final approximation holds when we have fine quantization and
optimal bit allocation.
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Transform coding gain, example

Theoretical transform coding gain for a mono version of heyhey04.wav
as a function of the block size of the transform (DCT).
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Example

Code a mono version of heyhey04.wav from the lab.

The signal has the variance σ2 ≈ 0.04555

If we construct a 4-bit (16 levels) scalar quantizer for the signal using the
LBG algorithm we get the distortion D ≈ 0.0003472 and a SNR of 21.18
dB.

We will now code the signal using a 4-point DCT. The variances of the
four transform components are

σ2
0 ≈ 0.1776

σ2
1 ≈ 0.003307

σ2
2 ≈ 0.001189

σ2
3 ≈ 0.0001455

Check: The average of the variances should be equal to the signal
variance.
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Example, cont.

We still want an average rate of R = 4 bits/sample. We use the formula

Rk = R +
1

2
log2

σ2
k

(
∏N−1

i=0 σ2
i )1/N

to determine how many bits we should use in each quantizer.

R0 ≈ 6.90 ≈ 7

R1 ≈ 4.03 ≈ 4

R2 ≈ 3.29 ≈ 3

R3 ≈ 1.78 ≈ 2
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Example, cont.

We train quantizers for each transform component using the LBG
algorithm with the given rates and get the resulting distortions

D0 ≈ 0.00003662

D1 ≈ 0.00007431

D2 ≈ 0.0001012

D3 ≈ 0.00002551

The average distortion is

D =
1

4

3∑
i=0

Di ≈ 0.00005941

which gives a SNR of 28.85 dB.
By using the transform we have gained 7.67 dB. The reasons that we
didn’t reach the theoretical gain (11.57 dB) are that the quantization is
not fine and that we could not use the exact optimal rates.
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Threshold coding

For each transform block we tell which transform components that have
a magnitude over a threshold value. Only these components are
quantized and coded, the rest are set to zero. Which components that
are above the threshold needs to be transmitted as side information for
every block.

Often runlength coding of the zeros are used for this side information.

For twodimensional transforms a zigzag scanning of the components are
usually performed, to get a onedimensional signal, before the runlength
coding.

In practice, usually no separate thresholding is done. Instead, the
components that are quantized to zero are the ones that are considered
to be below the threshold.
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Zigzag scanning

Zigzag scanning for 8× 8 transform. The DC level in the upper left
corner is usually treated separately.
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JPEG

ISO standard (1990) for still image coding.

Uses DCT of size 8× 8 pixels.

1-4 colour components.

Either 8 or 12 bits per colour components. The common file formats
JFIF and EXIF only allow 8 bits per component.

No explicit thresholding, uniform quantization. The step size can be
choosen freely for each of the 64 transform components. Typically the
high frequency components are quantized harder than the low frequency
components.

The source coding is either runlength coding of zeros followed by
Huffman coding, or arithmetic coding. Since the arithmetic coder in the
standard was protected by several patents, only Huffman coding is used
in practice.
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JPEG

Image quality is controlled by the choice of the step sizes of the 64
quantizers. Since we can choose them freely and independently of each
other, it might be hard to find the best choice of step sizes for a given
average rate or a given average distortion.

In order to simplify, most JPEG coders (eg digital cameras) only let the
user choose one quality parameter. Each quality parameter will
correspond to a pre-chosen matrix of step sizes. A quantization matrix
might look like this

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
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JPEG, coding of the DC level

The difference d from the DC level in the previous block is coded. The
Huffman coding is not done directly on the difference values. Instead a
category is formed according to

k = dlog(|d |+ 1)e

Stastics are gathered for all categories and a Huffman code is
constructed.
The codeword for a difference d consists of the Huffman codeword for k
followed by k extra bits to exactly specify d .

k d extra bits
0 0 −
1 −1, 1 0, 1
2 −3,−2, 2, 3 00, 01, 10, 11
3 −7, . . . ,−4, 4, . . . , 7 000, . . . , 011, 100, . . . , 111
...

...
...
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JPEG, coding of other components

The components are ordered in zigzag order. All runs of zeros are
replaced by the length of the run (min 0, max 15). Just as for the DC
component, we form the category for each non-zero component l as

k = dlog(|l |+ 1)e

A new symbol alphabet is constructed, consisting of pairs (runlength,
category). We gather statistics for the pairs and build a Huffman code
for the new alphabet. Just as for the DC level, the codeword for each
pair is followed by k bits that exactly tells us what value the non-zero
component has.
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JPEG

In the Huffman code we also have two special symbols, (End Of Block)
which is used when all the remaining components in a block are zero and
ZRL (Zero Run Length) which is used when we have to code a run of
zeros that is longer than 15. ZRL means 16 zeros. For example, a run of
19 zeros followed by category 5 is described as (ZRL)(3,5).
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Example image

768× 512 pixels, 8 bits/pixel
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JPEG, example

One block from the image

Pixel values:

6 13 26 54 45 −33 −56 12
21 23 46 60 24 −53 −38 22
32 47 62 39 −15 −69 −20 33
48 52 37 −1 −54 −57 12 20
51 30 −7 −49 −61 −6 17 31

9 −22 −52 −68 −18 14 29 65
−42 −58 −77 −32 12 31 71 59
−72 −63 −25 9 35 86 74 25

128 has been removed from all pixel calues, so black is -128 and white is
127.
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JPEG, example

After DCT (rounded to integers for clarity)

42 −36 68 −50 33 0 −8 6
37 213 −35 −116 65 −20 −3 6
12 −95 −143 25 36 −11 1 −2
−37 −25 43 50 20 −31 12 −3

8 24 −14 12 −33 11 8 −11
−12 −12 9 −7 9 2 −21 5

4 3 −5 −5 −2 −14 15 3
0 0 4 1 −1 0 0 −5
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JPEG, example

After quantization with step size 30 for all components (divide with the
step size and round to integer)

1 −1 2 −2 1 0 0 0
1 7 −1 −4 2 −1 0 0
0 −3 −5 1 1 0 0 0
−1 −1 1 2 1 −1 0 0

0 1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Order in zigzag order (DC component removed)

-1 1 0 7 2 -2 -1 -3 -1 0 -1 -5 -4 1 0 2 1 1 1 0 0 0 0 2 1 -1 0 0 0 0 1 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
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JPEG, example

Gather statistics for the DC categories and construct a Huffman code.
For the example test image we get the codeword lengths:

category codeword length
0 2
1 2
2 2
3 3
4 4
5 5
6 5

The DC level in our quantized block is 1, which is category 1. Thus we
will used 2+1 to code it.
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JPEG, example

-1 1 0 7 2 -2 -1 -3 -1 0 -1 -5 -4 1 0 2 1 1 1 0 0 0 0 2 1 -1 0 0 0 0 1 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

Code as pairs (runlength, non-zero component)

(0,-1) (0,1) (1,7) (0,2) (0,-2) (0,-1) (0,-3) (0,-1) (1,-1) (0,-5) (0,-4)
(0,1) (1,2) (0,1) (0,1) (0,1) (4,2) (0,1) (0,-1) (4,1) (7,-1) (0,-1) (14,-1)
(EOB)

Code the non-zero components as category plus extra bits

(0,1) 0 (0,1) 1 (1,3) 111 (0,2) 10 (0,2) 01 (0,1) 0 (0,2) 00 (0,1) 0 (1,1)
0 (0,3) 010 (0,3) 011 (0,1) 1 (1,2) 10 (0,1) 1 (0,1) 1 (0,1) 1 (4,2) 10
(0,1) 1 (0,1) 1 (4,1) 1 (7,1) 1 (0, 1) 0 (14,1) 0 (EOB)

Do the same for all blocks in the image, gather statistics for the pairs
(runlength, category) and construct a Huffman code for them.
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JPEG, example

Lengths of Huffman codewords (rows categories 1-7, columns runlengths
0-15):

2 5 6 7 6 6 5 4 7 8 10 11 11 10 9 8
4 7 8 9 8 8 6 7 12 - - - - 14 14 14
6 10 10 9 10 9 8 9 - - - - - - - -
5 12 12 12 12 12 10 12 - - - - - - - -
4 - - - - 15 15 - - - - - - - - -
4 - - - - - - - - - - - - - - -

10 - - - - - - - - - - - - - - -

EOB is coded with 2 bits, ZRL with 8 bits.

For our block we will need in total 3 bits for the DC level and 125 bits for
the AC components.
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JPEG, example

The decoder recreates the following transform block (multiply decoded
components with the step sizes)

30 −30 60 −60 30 0 0 0
30 210 −30 −120 60 −30 0 0

0 −90 −150 30 30 0 0 0
−30 −30 30 60 30 −30 0 0

0 30 0 0 −30 0 0 0
0 0 0 0 0 0 −30 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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JPEG, example

The block is then inverse transformed to the following block

−1 17 22 54 44 −41 −59 0
12 14 51 55 13 −45 −52 26
28 47 63 41 −28 −65 −22 32
46 67 44 −6 −59 −59 2 27
47 26 −4 −53 −55 −16 9 43
10 −29 −61 −54 −14 18 36 59
−43 −57 −66 −21 19 43 67 45
−73 −71 −22 4 22 73 71 20

which looks like
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Decoded image

0.35 bits/pixel, PSNR 36.5 dB
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JPEG coding
PSNR as a function of the rate by JPEG-coding of the grayscale test
image.
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Subband coding

Split the signal into different frequency bands using a number of
bandpass filters. The different frequency signals can (in theory) be
downsampled without destroying any information, since they have a
smaller bandwith than the original signal.

Quantize and source code the different frequency signals.

Transform coders and subband coders are closely related.
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Subband coder (M bands)

-

-

HM

H1

...

-

-

↓ M

↓ M

...

-

-

QM

Q1

...

-

-

source coder M

source coder 1

...

-

-

X

Hi ; i = 1 . . .M are called analysis filters.

↓ M denotes downsampling with a factor M, ie we only keep every M:th
sample in each subband.

The source coders and quantizers can of course also depend on each
other.
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Subband decoder (M bands)

X̂
-

KM

K1

...

-

-

↑ M

↑ M

...

-

-

Q−1M

Q−11

...

-

-

source decoder M

source decoder 1

...

-

-

Ki ; i = 1 . . .M are called synthesis filters.

↑ M denotes upsampling with a factor M, ie M − 1 zeros are inserted
after each sample.

The source decoders and reconstructions can of course depend on each
other.
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Recursive filtering

Either we have M actual filters, or we use only two filters (one highpass
filter and one lowpass filter) and then apply the filters recursively to
divide the signal into narrow bands. (The filtering and downsampling
have been combined.)

X

-

-

H1/ ↓ 2

H2/ ↓ 2

-

-

H1/ ↓ 2

H2/ ↓ 2

-

-

-

-

H1/ ↓ 2

H2/ ↓ 2

-

-

. . .
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Flat filter bank

Division of the frequency axis using a flat filter bank with 4 bands:

π/2 3π/4 π

ω

π/4

1
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Recursive filtering, cont.

Another way is to only keep splitting the lowpass branch. Such a division
is called dyadic.

X

-

-

H1/ ↓ 2

H2/ ↓ 2 -

-

-

H1/ ↓ 2

H2/ ↓ 2 -

-

-

H1/ ↓ 2

H2/ ↓ 2

-

-

. . .
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Dyadic filter bank

Division of the frequency axis using a dyadic filter bank with 4 bands:

π/2 π

ω

π/4

1

π/8
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Filter properties

If we consider the system coder-decoder for a 2-band subband coder
without quantization, we can show (see Sayood) that the reconstructed
signal, expressed in the z-transform, looks like

X̂ (z) =
1

2
[H1(z)K1(z) + H2(z)K2(z)]X (z) +

+
1

2
[H1(−z)K1(z) + H2(−z)K2(z)]X (−z)

We’re usually interested in filters that give perfect reconstruction, ie
filters where the reconstructed signal is equal to the original signal, apart
from a constant gain and/or a time delay

X̂ (z) = c · z−n0 · X (z)

Another common demand is that we only want to use filters with a finite
impulse response (FIR).
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Filter choices

There are several ways of finding suitable filters for subband coding, eg
QMF, power symmetric filters, wavelets. A few examples:

Haar filter

H1(z) = 1√
2

[1 + z−1] H2(z) = 1√
2

[1− z−1]

K1(z) = H2(−z) K2(z) = −H1(−z)

LeGall filter

H1(z) =
1

4
√

2
[−z2 + 2z + 6 + 2z−1 − z−2]

H2(z) =
1

2
√

2
[−1 + 2z−1 − z−2]

K1(z) = H2(−z)

K2(z) = −H1(−z)
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Transform coding as subband coding

Suppose that we have an N-point transform A. The signal to be coded is
split into small blocks of N samples that are transformed. The transform
components are calculated as

θn =
N−1∑
i=0

an,i · xi

This is equivalent to filtering the signal with N filters with impulse
responses

Hn(z) =
N−1∑
i=0

an,i · z−i

and then subsampling with a factor N.
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Twodimensional signals

Usually only two filters (lowpass and highpass) are used. The image is
filtered horizontally and then vertically with the filter pair so that we get
four different frequency bands. Traditionally we only keep splitting the
lowpass-lowpass part. Typically this is done for a few steps, depending on
the size of the image.

HL

LL LH

HH
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Original image
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Subband transformed image

The high frequency bands have been amplified to show the results more
clearly.
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Quantization and source coding

In principle we can use the same kinds of methods that are used in
transform coding when we do quantization and source coding.

The most important part is to find an efficient way to do source coding.

In the high frequency bands most of the components will be quantized to
0, and there is a strong correlation between adjacent components in the
same subband. There is also a correlation between components in
different subbands at the same position in the image (eg an edge in the
image will give large values in several subbands). This can be utilized in
the source coding.
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Bit allocation

If we have a flat filter bank we can do bit allocation in exactly the same
way as in in transform coding (zonal coding).

If we dont have uniform frequency bands, eg from using a dyadic filter
bank, we have to take into account the different sample rates of the
different bands. This is because we have performed different number of
subsamplings for the different bands.
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JPEG 2000

ISO standard for coding of still images.

The image is first split into a number of rectangular parts (tiles).
Normally we will only have one tile covering the whole image.

Each tile is transformed using a dyadic subband transform (wavelet
transform), using 0-32 divisions.

The transformed image is divided into small rectangular blocks of 2k × 2l

(2 ≤ k , l ≤ 10; k + l ≤ 12) coefficients for quantization and source
coding.

The quantization is uniform.

Binary arithmetic coding. The coefficents are coded one bitplane at a
time. The coefficients are coded conditioned on surrounding coefficents
in the same block. The similarity between different subbands is not used.
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JPEG 2000

Gives a progressive bitstream, ie its possible to decode just the beginning
of the stream and still get a whole image, but with lower quality.

It’s possible to specify a region of interest, ie a part of the image can be
coded using higher quality than the rest of the image.

1-16384 colour components in the image. Can thus be used for
multispectral and hyperspectral images.

The input image can have up to 38 bits per colour component.

There is also a lossless coding mode, giving slightly worse results than for
instance JPEG-LS.
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Original image

24 bits/pixel
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JPEG 2000

0.96 bits/pixel (compression ratio 25)
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JPEG

0.96 bits/pixel (compression ratio 25)
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JPEG 2000

0.48 bits/pixel (compression ratio 50)
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JPEG

0.48 bits/pixel (compression ratio 50)
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JPEG 2000

0.24 bits/pixel (compression ratio 100)
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JPEG

0.24 bits/pixel (compression ratio 100)
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JPEG 2000

0.12 bits/pixel (compression ratio 200)
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JPEG

0.12 bits/pixel (compression ratio 200)
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JPEG 2000

0.06 bits/pixel (compression ratio 400)
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JPEG

0.06 bits/pixel (compression ratio 400)
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Comparison JPEG/JPEG 2000
PSNR as a function of the rate when coding the grayscale test image
using JPEG (blue curve) and JPEG 2000 (red curve).
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