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Markov sources

Assume that we have a source that gives a sequence {xn} as output. If the con-
ditional probabilities for the outcome xn at time n only depend on the previous
k outcomes

p(xn|xn−1xn−2xn−3 . . .) = p(xn|xn−1 . . . xn−k)

the source is said to be a Markov source of order k. That means that a Markov
source has a limited memory k steps back in time.

If the alphabet has the size N the Markov source can be described by a state
model, where we have Nk states (xn−1 . . . xn−k) and where we go from state
(xn−1 . . . xn−k) to state (xn . . . xn−k+1) with the probability p(xn|xn−1 . . . xn−k).
These probabilities are called transition probabilities. We can call the states si,
where i = 1 . . .Nk.

Example

Suppose we have a Markov source of order 2 with the alphabet A = {a, b} and
the transition probabilities

p(a|aa) = 0.9 ; p(b|aa) = 0.1 ; p(a|ab) = 0.7 ; p(b|ab) = 0.3

p(a|ba) = 0.2 ; p(b|ba) = 0.8 ; p(a|bb) = 0.05 ; p(b|bb) = 0.95

Note that the transition probabilities for each state must sum to 1. We can
draw the Markov source as the graph below:
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Stationary distribution

We want to be able to calculate the probability that we at any give time are
standing in a certain state, the stationary distribution.

The Markov source can be described by its transition matrix P. This matrix
contains on row i and column j the probability of going from state si to state
sj .

Example, cont.

For our example source we have, setting s1 = aa, s2 = ab, s3 = ba and s4 = bb:

P =




0.9 0 0.1 0
0.7 0 0.3 0
0 0.2 0 0.8
0 0.05 0 0.95



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Suppose that we at time n are standing in state si with the probability pn
i .

The distribution at time n + 1 can then be calculated as

[pn+1
1 pn+1

2 . . . pn+1
Nk ] = [pn

1 pn
2 . . . pn

Nk ] · P
If we now let n approach infinity, we get the stationary distribution. We denote
the probability of standing in state si as wi and the stationary distribution as
w̄ = [w1 w2 . . . wNk ]. The stationary distribution can then be found by solving
the equation system

w̄ = w̄ · P
or

w̄ · (P − I) = 0̄

This equation system is underdetermined. To be able to solve it, we have to
remove one of the equations and replace it with

∑Nk

i=1 wi = 1 (since wi are
probabilities, they must sum to 1).

Example, cont.

Solve

w̄ · (P − I) = w̄ ·




−0.1 0 0.1 0
0.7 −1 0.3 0
0 0.2 −1 0.8
0 0.05 0 −0.05


 =

(
0 0 0 0

)

Replace the third equation with
∑Nk

i=1 wi = 1 (it doesn’t matter which equation
we choose). So instead we solve the equation system

w̄ ·




−0.1 0 1 0
0.7 −1 1 0
0 0.2 1 0.8
0 0.05 1 −0.05


 =

(
0 0 1 0

)
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=⇒ w̄ =
(

0.28 0.04 0.04 0.64
)

I.e., we’re standing in state aa with the probability 0.28, in state ab or ba with
the probability 0.04 each and in state bb with the probability 0.64. 2

Probabilities of symbol sequences

By calculating the probabilities for the different states we have also calculated
the probabilities for k-tuples of source symbols. From this distribution we can of
course calculate the probabilities for shorter sequences by calculating marginal
distributions, i.e. if we want to know the probabilities for n-tuples, n < k we
just sum the probabilities where the first n symbols are the same.

Example, cont.

p(a) = p(aa) + p(ab) = 0.28 + 0.04 = 0.32

p(b) = p(ba) + p(bb) = 0.04 + 0.64 = 0.68
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We can also calculate the probabilities for longer symbol sequences by using the
transition probabilities. For example, for triplets we get
p(xi+2xi+1xi) = p(xi+1xi) · p(xi+2|xi+1xi).

Example, cont.

p(aaa) = p(aa) · p(a|aa) = 0.28 · 0.9 = 0.252
p(aab) = p(ab) · p(a|ab) = 0.04 · 0.7 = 0.028
p(aba) = p(ba) · p(a|ba) = 0.04 · 0.2 = 0.008
p(abb) = p(bb) · p(a|bb) = 0.64 · 0.05 = 0.032
p(baa) = p(aa) · p(b|aa) = 0.28 · 0.1 = 0.028
p(bab) = p(ab) · p(b|ab) = 0.04 · 0.3 = 0.012
p(bba) = p(ba) · p(b|ba) = 0.04 · 0.8 = 0.032
p(bbb) = p(bb) · p(b|bb) = 0.64 · 0.95 = 0.608
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Entropy rates for Markov sources

The entropy rate of a Markov source is given by

lim
n→∞H(Xn|X1X2 . . . Xn−1) = H(Xn|Xn−1 . . .Xn−k)

because of the limited memory. The entropy rate can also be calculated as the
average of the entropies for the different states.

Nk∑
j=1

wj · H(Si+1|Si = sj)
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Si is a random process that describes the state sequence. H(Si+1|Si = sj) is
the entropy of the transition probabilities in state sj .

Example, cont.

H(Xn|Xn−1 . . . Xn−k) = −0.252 · log 0.9 − 0.028 · log 0.7
−0.008 · log 0.2 − 0.032 · log 0.05
−0.028 · log 0.1 − 0.012 · log 0.3
−0.032 · log 0.8 − 0.608 · log 0.95

≈ 0.3787

Nk∑
j=1

wj · H(Si+1|Si = sj) = 0.28 · (−0.1 · log 0.1 − 0.9 · log 0.9) +

0.04 · (−0.7 · log 0.7 − 0.3 · log 0.3) +
0.04 · (−0.2 · log 0.2 − 0.8 · log 0.8) +
0.64 · (−0.05 · log 0.05 − 0.95 · log 0.95) ≈

≈ 0.3787
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