
TSBK38 Image and Audio Compression

Quick Reference

Harald Nautsch

March 4, 2025

1

Contents

1 Foreword 5

2 Introduction 5

2.1 What is data compression? . 5
2.2 Example: JPEG still image coding 5
2.3 Performance measures . 6
2.4 What is the original? . 7
2.5 Properties to use . 7

3 Random source models 7

3.1 Discrete sources . 7
3.2 Random variables and processes 7
3.3 Memory sources . 8
3.4 Markov source example . 9
3.5 Random modeling . 10

4 Lossless compression 11

4.1 Source coding . 11
4.2 Properties of codes . 12
4.3 Tree codes . 12
4.4 Decoding a tree code . 13
4.5 Code performance . 13
4.6 Kraft’s inequality, mean codeword length 13
4.7 Entropy as a lower bound . 14
4.8 Optimal codes . 14
4.9 Extended codes . 15

5 Information theory 15

5.1 Information measure . 15
5.2 Entropy . 16
5.3 Entropy of sources . 17

6 Practical coding methods 17

6.1 Huffman coding . 17
6.2 The unary code . 18
6.3 Golomb codes . 18
6.4 Arithmetic coding . 19

6.4.1 Interval division . 20
6.4.2 Generating the codeword 21
6.4.3 Average codeword length and rate 21
6.4.4 Memory sources . 22
6.4.5 Arithmetic decoding . 22
6.4.6 Coding example . 22
6.4.7 Decoding example . 23

2

6.4.8 Practical problems . 24
6.5 Lempel-Ziv coding . 25

6.5.1 LZ77 . 25
6.5.2 LZSS . 25
6.5.3 Other improvements . 26
6.5.4 Buffer sizes . 26
6.5.5 LZ78 . 27
6.5.6 LZW . 27

7 Coding with distortion 27

7.1 Continuous alphabet sources . 27
7.2 Distortion measure . 28
7.3 Random signal models . 29

7.3.1 Examples of probability distributions 29
7.3.2 Dependence and correlation 30
7.3.3 Auto correlation function 30

7.4 Distortion for random signals . 31
7.5 Theoretical limit . 31
7.6 Quantization . 32
7.7 Uniform quantization . 33
7.8 Lloyd-Max quantization . 35
7.9 Quantization followed by source coding 36
7.10 Fine quantization . 36
7.11 Vector quantization . 39
7.12 The LBG algorithm . 41

8 Linear predictive coding 42

8.1 Optimization of predictor coefficients 43
8.2 Prediction gain . 44
8.3 Signals with nonzero mean . 45
8.4 Multidimensional predictors . 45
8.5 Lossless predictive coding . 45

9 Colour images 46

9.1 Converting from RGB to YCbCr 46

10 Transform coding 46

10.1 Main idea . 47
10.2 Linear transforms . 48
10.3 Orthonormal transforms . 48
10.4 The transform as a basis change 49
10.5 Transform properties . 49
10.6 The Karhunen-Loève-transform (KLT) 49
10.7 The discrete cosine transform (DCT) 50
10.8 The discrete Walsh-Hadamard transform 51
10.9 Comparison between DCT and DWHT 51

3

10.10Comparison between DCT and KLT 51
10.11Twodimensional signals . 52
10.12Block size . 53
10.13Distortion . 53
10.14Zonal coding . 54
10.15Transform coding gain . 55
10.16Threshold coding . 55
10.17JPEG . 56

11 Subband coding 57

11.1 Subband coder (M bands) . 57
11.2 Recursive filtering . 58
11.3 Filter properties . 60
11.4 Twodimensional signals . 61
11.5 Quantization and source coding 62
11.6 JPEG 2000 . 62

4

1 Foreword

This document is not meant to be the sole source for learning about data com-
pression. The contents are based on the course slides and examples shown on
lectures and/or lessons and give brief descriptions of theory and coding methods.
For more details I refer you to other literature, in particular the 4th edition of
“Introduction to Data Compression” by Khalid Sayood. This book is available
in electronical form through the university library.

2 Introduction

2.1 What is data compression?

✲ coding ✲ decoding ✲
X Y X ′

We have some data X that we want to compress. This can be almost anything
(text, audio, still images, video streams, etc.). The date is compressed using
source coding. The result of this coding is a new signal Y that is “smaller” than
the original X , ie it requires less bits to represent. The signal Y is what we
are sending or storing. The reverse operation is source decoding, giving us the
decoded signal X ′.
We can differentiate between two classes of coding; lossless coding or lossy
coding. In lossless coding, the decoded data X ′ is exactly the same as the
original data X , while in lossy coding the decoded data is different from the
original (ie we introduce some form of distortion). Depending on what kind of
data we have, distortion might or might not be tolerated. For example, if the
data is written text we usually do not want any distortion. If we instead have
still images, we can usually tolerate that there might be small changes to the
pixel values. The advantages of doing lossy compression is that this will give us
the ability to get much more compression compared to lossless compression.

2.2 Example: JPEG still image coding

This is a simplified block diagram description of a JPEG still image coder:

5

✲ Block-based
transform

✲ Quantization ✲ Source coding ✲

✲✲

✲

✲

Image

Parameters

Size, colour space, meta data, etc

JPG file

JPEG is an example of a lossy coding method. The source coding box by itself
is a lossless coding methods. The quantizer is the part where information is
removed and where the distortion is introduced.
A JPEG decoder does everything in reverse order.

2.3 Performance measures

We need to measure how good our coder is. The obvious way is of course to
measure how much compression we get from our method. This can be done in
several (but equivalent) ways.
The first way is to measure the compression ratio, ie the ratio between the size
of the original data and the size of the compressed data. For example, if we
start with a file of size 25000 bytes and compress it down to a file of size 10000
bytes then the compression ratio is 2.5.
Another way of measuring is to look at the average data rate in bits/symbol
(or bits/pixel, bits/sample). If we again look at the same example, assuming
that the original symbols in the data consisted of single 8-bit bytes, then we
get a rate of 10000 · 8/25000 = 3.2 bits/symbol, compared to the uncompressed
version which has a rate of 8 bits/symbol.
The two ways of measuring are of course related, since 8/3.2 = 2.5. In this
course we mostly are going to use the rate as a measure, since it is easy to
compare to theoretical limits (entropy).
For video and audio signals and other time signals, the rate is often given as
bits/s (kbits/s, Mbits/s).
If we are doing lossless compression, then the rate (or compression ratio) is the
only important part. However, when doing lossy compression we also have to
measure how much distortion we have introduced into the decoded signal.
For media signals (audio, images, video) the most “correct” way would be to
use human evaluation of the compressed data. Ie, let a test panel grade the
quality of the decoded signal compared to the original signal, on a scale from
1-5.
While human evaluation is in some way the proper way of measuring distortion,
it is very impractical. Instead, we would like to have some mathematical measure
that is easy to calculate. The most common way of measuring distortion is the
mean square error (mse) which is usually given as the signal to noise ratio
(SNR) in dB.

6

For audio signals (music, speech) there are good models for how the human
hearing works, and then we can adapt the mathematical models to take into
account more subjective (qualitative) experiences.

2.4 What is the original?

What is the original data that we are compressing? For audio and images the
original signals are sampled and finely quantized amplitude signals, ie we have
digital signals.
The signal can be either scalar (mono sound, grayscale images) or vector valued
(RGB, CMYK, multispectral images, stereo sound, surround sound).
Even though the original signal is almost always already quantized we will still
often use amplitude continuous models for it

2.5 Properties to use

There are a few properties of the signal can we use to achieve compression:

• All symbols are not equally common. For instance in a music signal small
amplitude values are more common than large amplitude values. A good
code will have short descriptions for common values and longer descrip-
tions for uncommon values.

• Dependence between symbols (samples, pixels). For instance in an image
two pixels next to each other usually have almost the same value. A good
coding algorithm will take advantage of this dependence.

• Properties of the human vision or hearing system. We can remove infor-
mation that a human can not see or hear anyway.

3 Random source models

3.1 Discrete sources

A source is something that produces a sequence of symbols. The symbols are
elements in a discrete alphabet A = {a1, a2, . . . , aL} of size L. We will mostly
deal with finite alphabets, but infinite alphabets can also be used.
In most cases we only have access to a symbol sequence generated by the source
and we will have to model the source from the given sequence.

3.2 Random variables and processes

The source models we will focus on are random models, where we assume that
the symbols are generated by random variables or random processes.
The simplest random model for a source is a discrete random variable X . We
have the probability that the random variable takes a certain value from the
alphabet:

7

Pr(X = ai) = PX(ai) = P (ai) = pi

P (ai) ≥ 0 , ∀ai
L
∑

i=1

P (ai) = 1

Random variables can be useful as models if we have sources where there is no
dependence between different symbols in a sequence (ie white noise). However,
most real world signals have some kind of dependence between symbols in the
sequence (text, images and audio don’t look or sound like white noise).
A better source models where we can model the dependence is a discrete sta-
tionary random process.
A random process Xt can be viewed as a sequence of random variables, where
we get an outcome in each time instance t. (We are using “time” as a general
term for sequence number here, for instance in a text or an image we don’t have
an explicit time, but we do have a position in the sequence.)
Joint and conditional probabilities given the output of the source at two different
times t and s:

P (xt, xs) = Pr(Xt = xt, Xs = xs)

P (xs|xt) =
P (xt, xs)

P (xt)
, when P (xt) > 0

P (xt, xs) = P (xt) · P (xs|xt)

3.3 Memory sources

Dependence between the signal at different times is called memory. If Xt and
Xt+k are independent for all k 6= 0 the source is memoryless.
For a memoryless source we have:

P (xt, xt+k) = P (xt) · P (xt+k)

P (xt+k|xt) = P (xt+k)

A Markov source of order k is a memory source with limited memory k steps
back in the sequence.

P (xn|xn−1xn−2 . . .) = P (xn|xn−1 . . . xn−k)

If the alphabet is A = {a1, a2, . . . , aL}, the Markov source can be described as a
state model with Lk states (xn−1 . . . xn−k) where we at time n move from state
(xn−1 . . . xn−k) to state (xn . . . xn−k+1) with probability P (xn|xn−1 . . . xn−k).
These probabilities are called transition probabilities

8

The sequence of states is a random process Sn = (Xn, Xn−1 . . . , Xn−k+1) with
alphabet {s1, s2, . . . , sLk} of size Lk.
The Markov source can be described using its starting state and its transition
matrix P. This quadratic matrix has in row r and column k the transition
probability from state sr to sk.
If it is possible to move, with positive probability, from every state to every
other state in a finite number of steps, the Markov source is called irreducible.
If we at time n are in state si with the probability pni , we can calculate the
probabilities for time n+ 1 as

(pn+1
1 pn+1

2 . . . pn+1
Lk) = (pn1 pn2 . . . pnLk) ·P

A distribution over the states such that the distribution at time n + 1 is the
same as at time n is called a stationary distribution. If the probabilities for the
starting state of a Markov source is a stationary distribution, then the source
is a stationary process.
If the Markov source is irreducible and aperiodic the stationary distribution
is unique and regardless of the starting distribution, the distribution over the
states will approach the stationary distribution as time goes to infinity.
We denote the stationary probabilities wi and define the row vector

w̄ = (w1, w2, . . . , wLk)

If the stationary distribution exists, it can be found as the solution of the equa-
tion system

w̄ = w̄ ·P
or

w̄ · (P− I) = 0̄

This equation system is under-determined (if w̄ is a solution then c · w̄ is also

a solution). To find the correct solution we add the equation
∑Lk

j=1 wj = 1 (wj

are probabilities and therefore their sum is 1).
(If you prefer equation systems with column vectors, you can just transpose the
entire expression and solve w̄T = PT · w̄T instead.)

3.4 Markov source example

Suppose we have a stationary Markov source Xn of order 1 with the alphabet
A = {a, b, c} and the transition probabilities P (xn|xn−1) given by

P (a|a) = 0.9 P (b|a) = 0.05 P (c|a) = 0.05
P (a|b) = 0.1 P (b|b) = 0.8 P (c|b) = 0.1
P (a|c) = 0.3 P (b|c) = 0 P (c|c) = 0.7

We can draw the Markov source as the state graph below:

9

a

b c

0.05

0.1 0.05

0.3

0.1

0.9

0.8 0.7

The stationary distribution of the Markov source are the probabilities P (xn) for
being in the states at any given time. For a source of order 1 this is the same
as the probabilities for the different symbols. For the example source this can
be gotten from the equation system

P (a) = 0.9 · P (a) + 0.1 · P (b) + 0.3 · P (c)
P (b) = 0.05 · P (a) + 0.8 · P (b)
P (c) = 0.05 · P (a) + 0.1 · P (b) + 0.7 · P (c)

This is an underdetermined system (ie one of the equations is always a linear
combination of the other equations) with a parametric solution. By adding the
equation

P (a) + P (b) + P (c) = 1

we can find the solution

P (a) =
4

6
; P (b) =

1

6
; P (c) =

1

6

Given this we can now also calculate any other joint or conditional probabilities
of the source. For instance, to cacluate the probability distribution P (xn, xn+1)
for pairs of symbols from the source, we use Bayes’ rule P (xn, xn+1) = P (xn) ·
P (xn+1|xn) which gives us

P (a, a) = 36/60 P (a, b) = 2/60 P (a, c) = 2/60
P (b, a) = 1/60 P (b, b) = 8/60 P (b, c) = 1/60
P (c, a) = 3/60 P (c, b) = 0 P (c, c) = 7/60

Similarily, we can calculate the probabilities of triples as P (xn, xn+1, xn+2) =
P (xn) · P (xn+1|xn) · P (xn+2|xn+1).

3.5 Random modeling

Give a long symbol sequence from a source, how do we make a random model
for it?

10

Use relative frequencies: To estimate the probability for a symbol, count the
number of times that symbol appears and divide by the total number of symbols
in the sequence. In the same way this can be done for pair probabilities, triple
probabilities, conditional probabilities et c.
Example: We have a source with alphabet {a, b}. A sequence from the source
looks like: bbbbaabbbaaaaabbbbbabaaabbbb.
To estimate the symbol probabilities we count how often each symbol appears:
a appears 11 times, b 17 times. The estimated probabilities P (xt) are then:

P (a) =
11

28
, P (b) =

17

28

For pair probabilities and conditional probabilities we instead count how often
the different symbol pairs appear. aa appears 7 times, ab 4 times, ba 4 times
and bb 12 times. The estimated probabilities P (xt, xt+1) and P (xt+1|xt) are:

P (aa) =
7

27
, P (ab) =

4

27
, P (ba) =

4

27
, P (bb) =

12

27

P (a|a) = 7

11
, P (b|a) = 4

11
, P (a|b) = 4

16
, P (b|b) = 12

16

4 Lossless compression

4.1 Source coding

Source coding means mapping sequences of symbols from a source alphabet onto
binary sequences (called codewords).
The set of all codewords is called a code.
A code where all the codewords have the same length (number of bits) is called
a fixed-length code, otherwise we have a variable length code.
Example: A = {a, b, c, d}
Symbol Code 1 Code 2 Code 3 Code 4 Code 5

a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111

Code the sequence abbacddcd using our five codes

Code 1: 000101001011111011

Code 2: 000011010110

Code 3: 01100011110011

Code 4: 010100110111111110111

Code 5: 001010011111111011111

11

4.2 Properties of codes

If you from any sequence of codewords can recreate the original symbol sequence,
the code is called uniquely decodable.
If you can recognize the codewords directly while decoding, the code is called
instantaneous.
If no codeword is a prefix to another codeword, the code is called a prefix code
(in some literature they are called prefix free codes). These codes are tree codes,
ie each codeword can be described as the path from the root to a leaf in a binary
tree.
All prefix codes are instantaneous and all instantaneous codes are prefix codes,
ie they are the same class .
Example, A = {a, b, c, d}
Symbol Code 1 Code 2 Code 3 Code 4 Code 5

a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111

Code 1 Uniquely decodable, instantaneous (tree code)

Code 2 Not uniquely decodable

Code 3 Not uniquely decodable

Code 4 Uniquely decodable, instantaneous (tree code)

Code 5 Uniquely decodable, not instantaneous

4.3 Tree codes

An instantaneous code can always be described as a binary tree, ie the codewords
are given by the paths from the root to the leaves in a binary tree. Code 1 and
code 4 from the previous examples are instantaneous codes.
Code 1 is described by this binary tree:

t t t t
t t

t❍❍❍❍
✟✟✟✟

❅
❅

�
�

❅
❅

�
�

a b c d

0 1 0 1

0 1

Code 4 is described by this binary tree:

12

t
t

t

t
t

t
t

✟✟✟✟

✟✟✟✟

✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

a

b

c d

0 1

0 1

0 1

4.4 Decoding a tree code

When decoding an instantaneous code, we can use the tree describtion for de-
coding. Start at the root node of the tree. Read a bit from the bit sequence
and go down the corresponding branch. Keep doing this until we reach a leaf
node, then output the corresponding symbol to the symbol sequence and start
over at the root node. Repeat until all the bits have been decoded.
For example, if we have coded a symbol sequence using code 4 above into the
following bit sequence

1011000101110010

then using the above algorithm we can easily decode it into the symbol sequence

bcaabdaab

This algorithm could of course also be used for decoding data coded with code 1.
However, since this is a fixed length code (all codewords have length 2), we can
just split the bit sequence into chunks of 2 bits and look up the corresponding
symbols in the codeword table.

4.5 Code performance

How good a code is is determined by its mean data rate R (usually just referred
to as rate or data rate) in bits/symbol.

R =
average number of bits per codeword

average number of symbols per codeword

Since we’re doing compression we want R to be as small as possible.
For a random source, there is a theoretical lower bound on the rate.
Note that R is a measure of how good the code is on average over all possible
sequences from the source. It tells us nothing of how good the code is for a
particular sequence. Some symbol sequences will give short bit sequences, while
other symbol sequences give long bit sequences

4.6 Kraft’s inequality, mean codeword length

An instantaneous code (prefix code, tree code) with the codeword lengths l1, . . . , lL
exists if and only if

L
∑

i=1

2−li ≤ 1

13

The inequality also holds for all uniquely decodable codes. It is then called
Kraft-McMillan’s inequality.
Mean codeword length:

l̄ =

L
∑

i=1

pi · li [bits/codeword]

if we code one symbol with each codeword we have

R = l̄

4.7 Entropy as a lower bound

There is a lower bound on the mean codeword length of a uniquely decodable
code:

l̄ ≥ −
L
∑

i=1

pi · log2 pi = H(Xt)

H(Xt) is the entropy of the source (more on entropy in section 5).
Proof of l̄ ≥ H(Xt)

H(Xt)− l̄ = −
L
∑

i=1

pi · log2 pi −
L
∑

i=1

pi · li =
L
∑

i=1

pi · (log2
1

pi
− li)

=

L
∑

i=1

pi · (log2
1

pi
− log2 2

li) =

L
∑

i=1

pi · log2
2−li

pi

≤ 1

ln 2

L
∑

i=1

pi · (
2−li

pi
− 1) =

1

ln 2
(

L
∑

i=1

2−li −
L
∑

i=1

pi)

≤ 1

ln 2
(1− 1) = 0

where we used the inequality lnx ≤ x− 1 and Kraft-McMillan’s inequality.

4.8 Optimal codes

A code is called optimal if no other code exists (for the same probability distri-
bution) that has a lower mean codeword length.
There are of course several codes with the same mean codeword length. The
simplest example is to just switch all ones to zeros and all zeros to ones in the
codewords.
Even codes with different sets of codeword lengths can have the same mean
codeword length.
Given that we code one symbol at a time, an optimal code satisfies l̄ < H(Xt)+1

Let li = ⌈− log pi⌉. We have that − log pi ≤ ⌈− log pi⌉ < − log pi + 1.

14

L
∑

i=1

2−li =

L
∑

i=1

2−⌈− log pi⌉

≤
L
∑

i=1

2log pi

=

L
∑

i=1

pi = 1

Kraft’s inequality is satisfied, therefore a tree code with the given codeword
lengths exists.
What’s the mean codeword length of this code?

l̄ =

L
∑

i=1

pi · li =
L
∑

i=1

pi · ⌈− log pi⌉

<

L
∑

i=1

pi · (− log pi + 1)

= −
L
∑

i=1

pi · log pi +
L
∑

i=1

pi = H(Xt) + 1

An optimal code can’t be worse than this code, then it wouldn’t be optimal.
Thus, the mean codeword length for an optimal code also satisfies l̄ < H(Xt)+1.

NOTE: If pi = 2−ki , ∀i for integers ki, we can construct a code with codeword
lengths ki and l̄ = H(Xt).

4.9 Extended codes

For small alphabets with skewed distributions, or sources with memory, a Huff-
man code can be relatively far from the entropy bound. This can be solved by
extending the source, ie by coding multiple symbols with each codeword.
If we code n symbols with each codeword, and the code has the mean codeword
length l̄ the rate will be

R =
l̄

n
The maximal redundancy of an optimal code (the difference between the rate
and the entropy) is 1

n when we code n symbols at a time.

5 Information theory

5.1 Information measure

Given a discrete randoms variable X with distribution

15

pi = P (ai) = Pr(X = ai)

The self information of the outcomes is

i(ai) = − log pi

The logarithm can be taken in any base. For practical reasons, base 2 is usually
used. The unit is then called bits. We can then easily compare the entropy with
the rate of a binary code.
The lower the probability of an outcome is, the larger the information of the
outcome is

pi → 0 =⇒ i(ai) → ∞
pi = 1 =⇒ i(ai) = 0

5.2 Entropy

The mean value of the information is called entropy.

H(X) =

L
∑

i=1

pi · i(ai) = −
L
∑

i=1

pi · log pi

The entropy can be seen as a measure of the average information in X , or a
measure of the uncertainty of X .
The entropy is bounded by

0 ≤ H(X) ≤ log L

The entropy is maximized when all outcomes are equally probable, ie a uniform
distribution.
If any one of the outcomes has probability 1 (and thus all the other outcomes
have probability 0) the entropy is 0, ie there is no uncertainty.
Given two random variables X and Y with alphabets A and B (these alphabets
can be the same) and joint distribution

PXY (ai, bj) = PX(ai) · PY |X(bj |ai) = PY (bj) · PX|Y (ai|bj)

The joint entropy is defined by

H(X,Y) = −
∑

i,j

PXY (ai, bj) · logPXY (ai, bj)

The conditional entropy is defined by

H(Y |X) = −
∑

i,j

PXY (ai, bj) · logPY |X(bj |ai)

16

H(Y |X) ≤ H(Y) with equality if X and Y are independent.
The joint entropy can be written as a sum of conditional entropies

H(X,Y) = H(X) +H(Y |X) = H(Y) +H(X |Y)

This can be generalized to any number of random variables

H(X,Y, Z,W) = H(X) +H(Y |X) +H(Z|X,Y) +H(W |X,Y, Z)

5.3 Entropy of sources

Given a stationary random process Xt

Similar to a random variable we have

H(Xt) =

L
∑

i=1

pi · i(ai) = −
L
∑

i=1

pi · log pi

Conditional entropy
H(Xt|Xt−1) ≤ H(Xt)

with equality if Xt is memoryless.
Joint entropy

H(Xt−1, Xt) = H(Xt−1) +H(Xt|Xt−1) ≤ 2 ·H(Xt)

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1 . . . Xn−1) ≤ n ·H(Xt)

The entropy rate of the source (usually just called entropy) is given

lim
n→∞

1

n
H(X1 . . . Xn) = lim

n→∞
H(Xn|X1 . . . Xn−1)

ie the entropy of one symbol at any point in time, conditioned on everything
that happened before that time.
For a memoryless source the entropy rate is just H(Xt).
For a Markov source of order k the entropy rate is H(Xt|Xt−1 . . .Xt−k)
The entropy rate gives a lower bound on the data rate of a uniquely decodable
code for the source, ie if we want to do lossless coding of the output of a random
source, the rate can never be less than the entropy rate of the source.

6 Practical coding methods

6.1 Huffman coding

Huffman codes are a method for constructing optimal tree codes. They are
given by a simple algorithm, where we build the code tree from the leaves to
the root.

17

Start with symbols as leaves.
In each step connect the two least probable nodes to an inner node. The proba-
bility for the new node is the sum of the probabilities of the two original nodes.
If there are several nodes with the same probability to choose from it doesn’t
matter which ones we choose.
When we have constructed the whole code tree, we create the codewords by
setting 0 and 1 on the branches in each node. Which branch that is set to 0
and which that is set to 1 doesn’t matter.

6.2 The unary code

Huffman coding gives optimal tree codes and can be adapted to any probability
distribution. However, this means that we need to transmit more extra infor-
mation about the code and that the decoding algorithm might be slow. In many
real world applications we will encounter distributions that are monotonously
decreasing. Assuming that we have a the alphabet A = {0, 1, 2, . . .} we will
have

P (0) > P (1) > P (2) > . . .

An example of a simple code for this type of distribution is the unary code. The
unary codeword for a non-negative integer n consists of n ones followed by a
zero.

Symbol codeword
0 0
1 10
2 110
3 1110
4 11110
...

...

The unary code will give a rate that is equal to the entropy for the dyadic
distribution P (i) = 2−(i+1)

Note that we can actually define unary codes in two ways. In some applications
long sequences of ones are not desirable. Then we can use the other definition,
where the codeword is n zeros followed by a one.

6.3 Golomb codes

The unary code is perfect for the dyadic distribution. However we might have
a distribution where the probabilities decrease slower than that. We would like
to be able to adapt the code to any monotonously decreasing distribution. This
leads us to Golomb codes.
Golomb codes are a class of codess that are suitable for these types of distribu-
tions. A Golomb code is specified by a single parameter m. This can be any
positive integer. In practical applications we usually restrict ourselves to integer
powers of two, because then the coding and decoding is especially easy.

18

Represent the integer n that we want to code as q = ⌊ n
m⌋ and r = n − qm, ie

we do integer division of n with m and get a quotient q and a remainder r.
First we send the codeword for the quotient q, using a unary code.
If m is an integer power of two, code r using a fixed length code with length
logm bits.
For example, if n = 21 and we use the Golomb code with m = 8 = 23, we
get q = 2 and r = 5. The codeword for q is 110 (two ones and a zero) and
the codeword for r is 101 (the number 5 written using 3 bits), giving us the
complete codeword 110101.
When decoding, we first find q by reading bits and counting how many ones we
get until we reach a zero. Then we read the next logm bits and interpret that as
a binary number, giving us r. Finally we get the decoded value as n = qm+ r.
If we want a parameter m that is not an integer power of two, the coding
algorithm is a little bit more complicated. q is still coded with a unary code,
but the codeword for r will use either ⌊logm⌋ bits or ⌈logm⌉ bits according to:

If 0 ≤ r < 2⌈logm⌉ −m Code r binary with ⌊logm⌋ bits

If 2⌈logm⌉ −m ≤ r ≤ m− 1 Code r + 2⌈logm⌉ −m binary with ⌈logm⌉ bits

The decoding of q is the same. For decoding r, start by reading ⌊logm⌋ bits
and interpret this as a binary number. If this value r is less than 2⌈logm⌉ −m
we are finished, otherwise read one more bit, interpret the bits read as a binary
number and then subtract 2⌈logm⌉ −m from this value.
Note that the whole Golomb code is specified by the single parameter m, so
there is very little information needed to describe the code.
Examples of Golomb codes:

Symbol m = 1 m = 2 m = 3 m = 4
0 0 0 0 0 0 0 00
1 10 0 1 0 10 0 01
2 110 10 0 0 11 0 10
3 1110 10 1 10 0 0 11
4 11110 110 0 10 10 10 00
5 111110 110 1 10 11 10 01
6 1111110 1110 0 110 0 10 10
...

...
...

...
...

Golomb codes are optimal for geometric distributions:

P (i) = si · (1− s) ; 0 < s < 1

if we choose m = ⌈− 1
log s⌉

6.4 Arithmetic coding

Huffman coding is optimal in theory, but it can be impractical to use for skewed
distributions and/or when extending the source.

19

Exampe: A = {a, b, c}, P (a) = 0.95, P (b) = 0.02, P (c) = 0.03
The entropy of the source is approximately 0.3349. The mean codeword length
of a Huffman code is 1.05 bits/symbol, ie more than 3 times the entropy. If
we want the rate to be no more than 5% larger than the entropy we have to
extend the source and code 8 symbols at a time. This gives a Huffman code
with 38 = 6561 codewords.
We would like to have coding method where we can directly find the codeword
for a given sequence, without having to determine the codewords for all possible
sequences. One way of doing this is arithmetic coding.
Suppose that we have a source Xt taking values in the alphabet {1, 2, . . . , L}.
Assume that the probabilities for all symbols are strictly positive: P (i) > 0, ∀i.
The cumulative distribution function F (i) is defined as

F (i) =
∑

k≤i

P (k)

F (i) is a step function where the step in k has the height P (k).
Example:
A = {1, 2, 3}
P (1) = 0.5, P (2) = 0.3, P (3) = 0.2
F (0) = 0, F (1) = 0.5, F (2) = 0.8, F (3) = 1

6.4.1 Interval division

The main idea behind arithmetic doing is to associate each possible symbol
sequence of length n with an interval somewhere inside the whole probability
interval [0, 1).
The size of each interval will be equal to the probability of the corresponding
sequence. There is no overlap between the intervals and there are no parts of
the whole probability interval that do not belong to any sequence interval (this
follows from the fact that the sum of the probabilities of all possible sequences
is 1).
Suppose that we want to code a sequence x = x1, x2, . . . , xn.
Start with the whole probability interval [0, 1). In each step j divide the interval
proportional to the cumulative distribution F (i) and choose the subinterval
corresponding to the symbol xj that is to be coded.
If we have a memory source the intervals are divided according to the conditional
cumulative distribution function.
An iterative algorithm for finding the interval for a given sequence is as follows:
Again, suppose that we want to code a sequence x = x1, x2, . . . , xn. We denote
the lower limit in the corresponding interval by l(n) and the upper limit by u(n).
The interval generation is the given iteratively by

{

l(j) = l(j−1) + (u(j−1) − l(j−1)) · F (xj − 1)
u(j) = l(j−1) + (u(j−1) − l(j−1)) · F (xj)

Starting values of the limits are l(0) = 0 and u(0) = 1.

20

The interval size is equal to the probability of the sequence, so

u(n) − l(n) = P (x)

6.4.2 Generating the codeword

Each symbol sequence of length n uniquely identifies a subinterval. The code-
word for the sequence is a number in the interval. The number of bits needed
in the codeword depends on the interval size, so that a large interval (ie a se-
quence with high probability) gets a short codeword, while a small interval gives
a longer codeword.
The codeword for an interval is given by the shortest bit sequence b1b2 . . . bk
such that the binary number 0.b1b2 . . . bk is in the interval and that all other
numbers staring with the same k bits are also in the interval.
Given a binary number a in the interval [0, 1) with k bits 0.b1b2 . . . bk. All
numbers that have the same k first bits as a are in the interval [a, a+ 1

2k
).

A necessary condition for all of this interval to be inside the interval belonging
to the symbol sequence is that it is less than or equal in size to the symbol
sequence interval, ie

P (x) ≥ 1

2k
⇒ k ≥ ⌈− logP (x)⌉

We can’t be sure that it is enough with ⌈− logP (x)⌉ bits, since we can’t place
these intervals arbitrarily (the intervals specified by k bits have fixed positions,
while the intervals given by the symbol sequences can be placed anywhere). We
can however be sure that we need at most one extra bit.
The codeword length l(x) for a sequence x is thus given by

l(x) = ⌈− logP (x)⌉ or l(x) = ⌈− logP (x)⌉+ 1

6.4.3 Average codeword length and rate

The average codeword length when doing arithmetic coding is given by

l̄ =
∑

x

P (x) · l(x) ≤
∑

x

P (x) · (⌈− logP (x)⌉+ 1)

<
∑

x

P (x) · (− logP (x) + 2) = −
∑

x

P (x) · logP (x) + 2 ·
∑

x

P (x)

= H(X1X2 . . . Xn) + 2

The resulting data rate is thus bounded by

R =
l̄

n
<

1

n
H(X1X2 . . . Xn) +

2

n

This is a little worse than the rate for an extended Huffman code, but extended
Huffman codes are not practical for large n. The complexity of an arithmetic
coder, on the other hand, is independent of how many symbols n that are coded.
In arithmetic coding we only have to find the codeword for a particular sequence
and not for all possible sequences.

21

6.4.4 Memory sources

When doing arithmetic coding of memory sources, we let the interval division
depend on earlier symbols, ie we use different F in each step depending on the
value of earlier symbols.
For example, if we have a binary Markov source Xt of order 1 with alphabet
{1, 2} and transition probabilities P (xt|xt−1)

P (1|1) = 0.8, P (2|1) = 0.2, P (1|2) = 0.1, P (2|2) = 0.9

we will use two conditional cumulative distribution functions F (xt|xt−1)

F (0|1) = 0, F (1|1) = 0.8, F (2|1) = 1

F (0|2) = 0, F (1|2) = 0.1, F (2|2) = 1

For the first symbol in the sequence we can either choose one of the two distri-
butions (ie we assume that the Markov source is starting in a particular state)
or use a third cumulative distribution function based on the stationary proba-
bilities.

6.4.5 Arithmetic decoding

The decoder receives a bit stream of coded data. In order to decode, the decoder
needs to know F and the length n of the original sequence.
The decoder will keep track of the same upper and lower limits u and l as the
coder used, starting with l(0) = 0 and u(0) = 1. The decoder reads bits from
the bitstream, interpreting the bits as a number. When enough bits have been
read that the number is certain to be in one of the intervals given
When decoding the decoder will read bits from the bitstream one at a time and
interpret as a binary number. The read bits will specify an interval. This bit
interval will be compared to the symbol intervals and as soon as all of the bit
interval is wholly inside a symbol interval we can decode that corresponding
symbol. The symbol interval is then split into its subintervals. Keep reading
bits until we have deocded n symbols.

6.4.6 Coding example

Assume a source with alphabet A = {1, 2, 3} and symbol probabilities

P (1) = 0.6, P (2) = 0.3, P (3) = 0.1

The cumulative distribution function is then

F (0) = 0, F (1) = 0.6, F (2) = 0.9, F (3) = 1

We want to code the sequence 1,3,2,1. The number of symbols to code n = 4.

l(0) = 0

22

u(0) = 1

x1 = 1

l(1) = 0+ (1− 0) · 0 = 0

u(1) = 0+ (1− 0) · 0.6 = 0.6

x2 = 3

l(2) = 0+ (0.6− 0) · 0.9 = 0.54

u(2) = 0+ (0.6− 0) · 1 = 0.6

x3 = 2

l(3) = 0.54 + (0.6− 0.54) · 0.6 = 0.576

u(3) = 0.54 + (0.6− 0.54) · 0.9 = 0.594

x4 = 1

l(4) = 0.576 + (0.594− 0.576) · 0 = 0.576

u(4) = 0.576 + (0.594− 0.576) · 0.6 = 0.5868

The sequence corresponds to the interval [0.576 0.5868). The interval size is
0.0108 and thus we will need at least ⌈− log2 0.0108⌉ = 7 bits in our codeword,
maybe one more. Write the two interval limits as binary numbers:

0.576 = 0.10010011011 . . .

0.5868 = 0.10010110001 . . .

The smallest seven bit number inside the interval is 0.1001010, and all numbers
starting with these bits are also inside the interval (ie smaller than the upper
interval limit). Thus, seven bits are enough. The codeword is 1001010.

6.4.7 Decoding example

The decoder has to know the number of symbols coded (n = 4) and the cumu-
lative distribution function:

F (0) = 0, F (1) = 0.6, F (2) = 0.9, F (3) = 1

Decode the first codeword in the bitstream starting 1001010001011 . . .

Read one bit at a time. The bits read sofar b1b2 . . . bk specify an interval
[0.b1b2 . . . bk 0.b1b2 . . . bk + 1/2k) As soon as this interval is wholly inside the
subinterval for a particular symbol sequence, we can decode one symbol. For

23

the first symbol, the intervals corresponding to symbols 1, 2 and 3 are [0 0.6),
[0.6 0.9) and [0.9 1) respectively.

bits binary interval decimal interval
1 [0.1 1) [0.5 1)
10 [0.10 0.11) [0.5 0.75)
100 [0.100 0.101) [0.5 0.625)
1001 [0.1001 0.1010) [0.5625 0.625)
10010 [0.10010 0.10011) [0.5625 0.59375)

Since this interval is wholly inside the interval for symbol 1, we can decode the
first symbol as 1. We then split this symbol interval into three parts acording to
F . This is gives us the intervals corresponding to symbols 1,2 and 3 as [0 0.36),
[0.36 0.54) and [0.54 0.6) respectively. We again check our bit interval and see
that we are wholly inside the interval for 3. Thus we decode the second symbol
as 3. We again split the symbolinterval into three parts acording to F . This
is gives us the intervals corresponding to symbols 1,2 and 3 as [0.54 0.576),
[0.576 0.594) and [0.594 0.6) respectively. Checking our bit interval again, we
see it covers more than one symbol interval. We must thus read more bits.

bits binary interval decimal interval
100101 [0.100101 0.10011) [0.578125 0.59375)

This interval is wholly inside the interval for symbol 2, so we can decode the
third symbol as 2. Split this symbol interval into three parts acording to F . This
is gives us the intervals corresponding to symbols 1,2 and 3 as [0.576 0.5868),
[0.5868 0.5922) and [0.5922 0.594) respectively. Checking our bit interval again,
we see it covers more than one symbol interval. We must thus read more bits.

bits binary interval decimal interval
1001010 [0.1001010 0.1001011) [0.578125 0.5859375)

This interval is wholly inside the interval for symbol 1, so we can decode the
fourth symbol as 1. Since we have now decoded 4 symbols, we are finished. The
following bits in the bitstream belong to the next codeword.
Our decoded symbol sequence is 1,3,2,1 which is exactly the symbol sequence
that that we coded.

6.4.8 Practical problems

The way we described arithmetic coding sofar is a theoretical description that
assumes that we first find the interval and then find the codeword for the re-
sulting interval. We also assumed that all calculations can be done exactly. and
that we have arbitrary precision in values. However, this is not true in the real
world.
When implementing arithmetic coding we have limited precision data types
available in our software or hardware and can’t store interval limits and proba-
bilities with aribtrary resolution.

24

We also want to start sending bits without having to wait for the whole sequence
with n symbols to be coded.
In this course we will not go further into practical implementations of arithmetic
coding, but if you are interested you should read the corresponding material in
the course book.

6.5 Lempel-Ziv coding

Lempel-Ziv coding is a group of coding algorithms where the code words are
referencing previous data in the sequence
There are two main types of Lempel-Ziv coders:

• Use a history buffer, code a partial sequence as a pointer to when that
particular sequence last appeared (LZ77).

• Build a dictionary of all unique partial sequences that appears. The code-
words are references to earlier words (LZ78).

The coder and decoder don’t need to know the statistics of the source. It can be
shown that given a stationary random source, the rate will asymptotically reach
the entropy rate of the source (assuming good choices of coding parameters).
Any coding method that has this property is called universal.
Lempel-Ziv coding in all its different variants are very popular methods for
general file compression and archiving, eg zip, gzip, ARJ and compress.
The image coding standards GIF and PNG use Lempel-Ziv.

6.5.1 LZ77

View the sequence to be coded through a sliding window. The window is
split into two parts, one part containing already coded symbols (search buffer)
and one part containing the symbols that are about to coded next (look-ahead
buffer).
Find the longest sequence in the search buffer that matches the sequence that
starts in the look-ahead buffer. The codeword is a triple < o, l, c > where o is a
pointer to the position in the search buffer where we found the match (offset),
l is the length of the sequence, and c is the next symbol that doesn’t match.
This triple is coded using a fixlength codeword. The number of bits required is

⌈logS⌉+ ⌈log(W + 1)⌉+ ⌈logL⌉

where S is the size of the search buffer, W is the size of the look-ahead buffer
and L is the alphabet size.

6.5.2 LZSS

If we look at the basic LZ77 algorithm, it is obvious that we are wasting bits.
It is unnecessary to send a pointer and a length if we don’t find a matching
sequence. Also, we only need to send a new symbol if we don’t find a matching

25

sequence. One way to make the algorithm more efficient is to use an extra flag
bit that tells if we found a match or not. We either send < 1, o, l > or < 0, c >.
This variant of LZ77 is called LZSS.

6.5.3 Other improvements

Depending on buffer sizes and alphabet sizes it can be better to code short
sequences as a number of single symbols instead of as a match.
In the beginning of the coding, before we have filled up the search buffer, we
can use shorter codewords for o and l.
All o, l and c are not equally probable, so we can get even higher compression
by coding them using variable length codes (eg Huffman codes, Golomb codes
or arithmetic codes) instead of using fixed length coding.

6.5.4 Buffer sizes

In principle we get higher compression for larger search buffers. For practical
reasons, typical search buffer sizes used are around 215 − 216, but there are
variants of LZ77 that use even larger buffer sizes. We of course never need to
use a buffer size that is larger than the actual data that we want to code.
Very long match lengths are usually not very common, so it is often enough to
let the maximum match length (ie the look-ahead buffer size) be a couple of
hundred symbols.
Example: LZSS coding of a text file, buffer size 32768, match lengths 3-130 (128
possible values). Histogram for match lengths:

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8
x 10

4

26

6.5.5 LZ78

A dictionary of unique sequences is built. In the beginning the dictionary is
empty, apart from index 0 that means “no match”.
Every new sequence that is coded is sent as the tuple < i, c > where i is the
index in the dictionary for the longest matching sequence we found and c is the
next symbol of the data that didn’t match. The matching sequence plus the
next symbol is added as a new word to the dictionary.
The number of bits required is

⌈logS⌉+ ⌈logL⌉

where S is the current size of the dictionary.
The decoder will build an identical dictionary during decoding, so we never have
to transmit any explicit information about the dictionary content.
Depending on the application, we might also have a maximum allowed dictionary
size, for instance if we have limited storage capacity and we are coding really
long sequences.
What to do when the dictionary becomes full? There are a few alternatives:

• Throw away the dictionary and start over.

• Keep coding with the dictionary, but stop adding new words to the dic-
tionary.

• As above, but only as long as the rate stays approximately constant. If the
rate starts to increase, throw away the dictionary and start over. In this
case we might have to add an extra symbol to the alphabet that informs
the decoder to start over.

6.5.6 LZW

LZW is the most commonly encountered variant of LZ78.
Instead of sending a tuple < i, c > we only send index i in the dictionary. For
this to work, the starting dictionary must contain words of all single symbols in
the alphabet.
Find the longest matching sequence in the dictionary and send the index as a
new codeword. The matching sequence plus the next symbol is added as a new
word to the dictionary.

7 Coding with distortion

7.1 Continuous alphabet sources

We have a signal xn, n = 1 . . .N to code. The alphabet is a subset of the real
numbers A ⊆ R. The alphabet can be continuous.
If we don’t have the demand that the decoded signal should be exactly the
same as the original signal we can get a lower data rate than if we have lossless

27

coding. Typically the signal is described using a smaller alphabet than the
original signal uses (quantization).
In the case where the original alphabet is continuous, in general an infinite
number of bits is required to describe the signal losslessly.
The more bits that are used, the closer to the original signal the decoded signal
x̂n will be.

7.2 Distortion measure

We need a measure of how much error we have in the decoded signal, the so
called distortion.
The most common measure is a quadratic error measure, combined with aver-
aging over the whole sequence

D =
1

N

N
∑

n=1

(xn − x̂n)
2

This is the mean square error of the decoded sequence.
There are other distortion measure that can be used (such as mean absolute
erroer), but in this course we will focus mainly on the men square error.
Often we want to consider the distortion (or noise power) relative to the signal
power, the so called signal to noise ratio (SNR)

σ2
x =

1

N

N
∑

n=1

x2
n

SNR =
σ2
x

D

SNR is usually expressed in dB

SNR = 10 · log10
σ2
x

D

When coding still images and video we usually use the peak-to-peak signal to
noise ratio (PSNR)

PSNR = 10 · log10
x2
pp

D

where xpp is the difference between the maximum and minum values of the
signal.

For example, if the data to be coded is a grayscale image quantized to 8 bits,
the signal can assume values between 0 and 255. The PSNR is then

PSNR = 10 · log10
2552

D

28

7.3 Random signal models

A signal can be modelled as an amplitude continuous stationary random process
Xn, with distribution function FX(x) and density function fX(x).

FX(x) = Pr(X ≤ x)

fX(x) =
d

dx
FX(x)

fX(x) ≥ 0 , ∀x
∫ ∞

−∞
fX(x)dx = 1

Pr(a ≤ X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(x)dx

Mean value

mX = E{Xn} =

∫ ∞

−∞
x · fX(x)dx

Quadratic mean value

E{X2
n} =

∫ ∞

−∞
x2 · fX(x)dx

Variance
σ2
X = E{(Xn −mx)

2} = E{X2
n} −m2

x

In most of our cases we will use signal models with mean value 0. In those cases
the variance is equal to the quadratic mean value.
The variance (or rather the quadratic mean value) is a measure of the signal
power.

7.3.1 Examples of probability distributions

Uniform distribution

fX(x) =

{

1
b−a a ≤ x ≤ b

0 otherwise

Mean value m = a+b
2 , variance σ2 = (b−a)2

12
Gaussian distribution (normal distribution)

fX(x) =
1√
2πσ

e−
(x−m)2

2σ2

Laplace distribution

fX(x) =
1√
2σ

e−
√

2|x−m|
σ

29

7.3.2 Dependence and correlation

The dependence of the signal value in two times instances n och m is given by
the twodimensional density function fXnXm(xn, xm).
If we can write this as a product fX(xn) · fX(xm) we say that the signal in the
two time instances are independent.
A signal where all time instances are independent of each other is a memoryless
signal or a white signal.
In most cases we will describe the dependence using the correlation E{Xn ·Xm}.
If E{Xn·Xm} = E{Xn}·E{Xm} we say that the signal in the two time instances
are uncorrelated. Independent signals are uncorrelated, but the reverse is not
necessarily true.
Similar to the discrete case, we can define a Markov source of order k as a source
with limited memory k steps back in time:

f(xn|xn−1xn−2 . . .) = f(xn|xn−1 . . . xn−k)

Markov models are a little to complicated, so we often restrict ourselves to
linear models, where the signal is modelled as white noise ǫn filtered by a linear
filter. Depending on the type of filter, we can classify our linear models as
AR (auto-regressive), MA (moving average) or ARMA (auto-regressive, moving
average).
AR(N)

xn =

N
∑

i=1

ai · xn−i + ǫn

MA(M)

xn =

M
∑

j=1

bi · ǫn−j + ǫn

ARMA(N,M)

xn =
N
∑

i=1

ai · xn−i +
M
∑

j=1

bi · ǫn−j + ǫn

All of these linear models are Markov models, but all Markov models can not be
modelled using linear models. Gaussian sources are an exception, any gaussian
source can always be modelled as an AR model.

7.3.3 Auto correlation function

The correlation properties of the signal is usually expressed using the auto cor-
relation function (acf), which for a stationary process is given by

RXX(k) = E{XnXn+k}

The auto correlation function is symmetric: RXX(−k) = RXX(k).
We also have: |RXX(k)| ≤ RXX(0) = E{X2

n}.

30

For a memoryless (white) process we have

RXX(k) = σ2
X · δ(k) =

{

σ2
X k = 0

0 otherwise

For an AR(1) process we have

RXX(k) = a|k| · σ2
X (|a| < 1)

The auto correlation function can of course also be defined for multidimensional
signals. For instance, for a twodimensional stationary random process Xi,j the
auto correlation function is given by

RXX(k, l) = E{Xi,jXi+k,j+l}

The auto correlation function is symmetric: RXX(−k,−l) = RXX(k, l)
We also have: |RXX(k, l)| ≤ RXX(0, 0) = E{X2

i,j}

7.4 Distortion for random signals

For a random signal Xn that is coded and then decoded to X̂n, the distortion
is given by

D = E{(X − X̂)2} =

∫ ∞

−∞
(x − x̂)2fX(x)dx

The signal power is (given mean zero)

E{X2} = σ2
X − (E{X})2 = σ2

X

and SNR as before

SNR = 10 · log10
σ2
X

D

7.5 Theoretical limit

The rate-distortion function R(D) for a source gives the theoretically lowest rate
R we can use to code the source, on the condition that the maximum allowed
distortion is D. Compare to the entropy rate limit for lossless coding.
For a white gaussian process with variance σ2 we get

R(D) =

{

1
2 log

σ2

D 0 < D ≤ σ2

0 otherwise

Ie, if we allow a distortion that is larger than the variance of the process, we
don’t need to transmit any bits at all. The decoder can just set the decoded
signal equal to the mean value at each time instance, which will give a distortion
equal to the variance.
We can also se that R → ∞ when D → 0

31

For gaussian sources with memory, the rate-distortion function can be calculated
from the power spectral density.

Φ(θ) = F{RXX(k)} =

∞
∑

k=−∞
RXX(k) · e−j2πθk

The rate-distortion function is given by

R(D) =

∫ 1/2

−1/2

max{1
2
log

Φ(θ)

λ
, 0} dθ

where

D =

∫ 1/2

−1/2

min{λ,Φ(θ)} dθ

The integration can of course be done over any interval of size 1, since the power
spectral density is a periodic function.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

D

R
(D

)

R(D) for an ideally bandlimited gaussian source (red), compared to the R(D)
for a memoryless/white gaussian source (blue). Both sources have variance 1.
As D tends towards 0, R(D) tends towards infinity for both sources.

7.6 Quantization

Quantization is a mapping from a continuous alphabet to a discrete alphabet
(or mapping from a large discrete alphabet to a smaller one). After quantizing a
signal we have a discrete signal, on which we can use our source coding methods
(Huffman, arithmetic coding, et c.)
A generalM level quantizer is specified byM+1 decision borders bi ; i = 0 . . .M
and M reconstruction levels (or reconstruction points) yi ; i = 1 . . .M .

32

The quantization operator Q(x) is given by

Q(x) = yi if bi−1 < x ≤ bi

And the reconstructed signal is thus

x̂n = Q(xn)

Sometimes it can be useful to see quantization and reconstruction as two sepa-
rate operations instead of just one operation.
Quantization: x → j such that bj−1 < x ≤ bj
Reconstruction: x̂ = yj
A sequence of x thus gives a sequence of indices j that can then be coded by a
source coder
The receiver decodes the index sequence and the maps the indices to the corre-
sponding reconstruction points.
Given a random signal model the distortion is

D = E{(X − X̂)2} =

=

∫ ∞

−∞
(x−Q(x))2fX(x)dx =

=

M
∑

i=1

∫ bi

bi−1

(x− yi)
2fX(x)dx

If no special source coding is used, ie if we just code the quantized signal using
a fixed length code, the rate is

R = ⌈log2 M⌉

7.7 Uniform quantization

In a uniform quantizer, the distance between two reconstruction points is con-
stant

yj − yj−1 = ∆

∆ is the stepsize of the quantizer.
The reconstruction points are placed in the middle of their intervals, which
means that all decision regions (apart from the end intervals in some cases) also
are of the same size

bi − bi−1 = ∆

To simplify the calculations we can assume that the number of reconstruction
points is given by M = 2R and that the quantizer is symmetric around the
origin. The following results can easily be generalized to arbitrary M .
The reconstruction point belonging to the interval [(j − 1)∆, j∆] is

yj =
2j − 1

2
∆

33

The simplest case is when the input distribution is uniform on the interval
[−A,A]:

∆ =
2A

M

The distortion for uniform quantization of a uniform distribution:

D =

M/2
∑

i=−M/2+1

∫ i∆

(i−1)∆

(x− 2i− 1

2
∆)2

1

2A
dx = M · 1

2A
· ∆

3

12
=

∆2

12

σ2
X =

(2A)2

12
=

∆2M2

12

SNR = 10 · log10
σ2
X

D
= 10 · log10 M2 =

= 10 · log10 22R = 20 ·R · log10 2 ≈ 6.02 ·R

For every bit added to the quantizer (ie for every doubling of the number of
reconstruction points) we will get approximately 6 dB higher SNR.
For unlimited distributions (eg a gaussian distribution) the two end intervals
will be infinitely large (in the calculations below we assume that that M is even
and that the quantizer is symmetric around the origin).

D =

M/2
∑

i=−M/2+1

∫ i∆

(i−1)∆

(x− 2i− 1

2
∆)2fX(x)dx +

+

∫ ∞

(M/2)∆

(x− M − 1

2
∆)2fX(x)dx +

+

∫ −(M/2)∆

−∞
(x− −M + 1

2
∆)2fX(x)dx

The last two terms are called the overload distortion of the quantizer.
To find the best choice of ∆ (the one that minimizes the distortion) we have to
solve

∂

∂∆
D = 0

which in the general case is a hard problem. Normally we will have to find a
numeric solution.
If the number of quantization levels M is large and ∆ is chosen such that the
overload distortion is small compared to the total distortion, the distortion is
approximately

D ≈ ∆2

12

34

7.8 Lloyd-Max quantization

How should we chose decision borders and reconstruction points to minimize the
distortion? The answer will of course depend on the distribution of the signal.
For a general quantizer we have

D =
M
∑

i=1

∫ bi

bi−1

(x − yi)
2fX(x)dx

We want to find the the quantizer that minimizes the distortion D.

∂

∂yj
D = 0 ⇒ yj =

∫ bj
bj−1

x · fX(x)dx
∫ bj
bj−1

fX(x)dx

The optimal placement of the reconstruction points is thus in the centroid of
the probability mass in each interval.

∂

∂bj
D = 0 ⇒ bj =

yj+1 + yj
2

The optimal placement of the decision borders is thus at the midpoints be-
tween the reconstruction points, ie we should always quantize to the closest
reconstruction point.
Note that these demands are necessary but not sufficient.
Also note that yj depends on bj−1 and bj and that bj depends on yj+1 and yj .
Usually we can only find closed solutions for simple distributions and for a small
number of reconstruction points.
If we can’t find a closed solution, we have to find the solution numerically. One
way of doing this is using Lloyd’s algorithm:

1. Start with a set of reconstruction points y
(0)
i , i = 1 . . .M . Set k = 0,

D(−1) = ∞ and choose a threshold ǫ.

2. Calculate optimal decision borders b
(k)
j =

y
(k)
j+1 + y

(k)
j

2

3. Calculate the distortion D(k) =
M
∑

i=1

∫ b
(k)
i

b
(k)
i−1

(x− y
(k)
i)2f(x)dx

4. If D(k−1) −D(k) < ǫ stop, otherwise continue

5. k = k+1. Calculate new optimal reconstruction points y
(k)
j =

∫ b
(k−1)
j

b
(k−1)
j−1

x · f(x)dx
∫ b

(k−1)
j

b
(k−1)
j−1

f(x)dx

6. Repeat from 2

35

Other stopping criteria (step 4 in the algorithm) can be used. For instance, stop
when D(k)/D(k−1) > 1− ǫ.
Another simple variant would be to not have a stopping criteria and just run
the algorithm for a fixed number of iterations.

7.9 Quantization followed by source coding

The probability P (j) of being in interval j is

P (j) =

∫ bj

bj−1

fX(x)dx

In the general case these probabilities are different for different intervals. We
could thus get a lower rate than logM by using some form of source coding.
Finding the optimal quantizer given an allowed rate R after source coding is
a hard problem. However, it can be shown that for sufficiently large R (fine
quantization) the optimal quantizer is a uniform quantizer. Thus, if we are
using some form of source coding, it is enough to use the simplest form of
quantization.

7.10 Fine quantization

When we have fine quantization, ie when the number of quantization levels is
large, the distortion is approximatively given by

D ≈ c · σ2
X · 2−2R

where σ2
X is the signal variance, R is the rate and c is a constant depending on

the type of quantization and the distribution of the signal.
Gaussian distribution, Lloyd-Max quantization:

c =
π
√
3

2

Gaussian distribution, uniform quantization, perfect source coding (R = H(X̂)):

c =
πe

6

Uniform distribution, uniform quantization:

c = 1

For fine quantization we have the approximations

D ≈ 1
12

∫∞
−∞ ∆2(x)f(x)dx

M ≈
∫∞
−∞

1
∆(x)dx

36

where ∆(x) is a function describing the size of the quantization interval at x
and M is the resulting number of reconstruction points.
For fine Lloyd-Max quantization, we should choose

∆(x) = k · (f(x))− 1
3

and the resulting rate will be R = log2 M .
Uniform quantization of Gaussian signal, followed by perfect source coding (R =
H(X̂)). Real values compared to the approximation D ≈ πe

6 · σ2
X · 2−2R.

Rate [bits/sample]
0 0.5 1 1.5 2 2.5 3 3.5 4

S
N

R
 [

d
B

]

-5

0

5

10

15

20

25

Real

Approximation

Lloyd-Max quantization of Gaussian signal. Real values compared to the ap-

proximation D ≈ π
√
3

2 · σ2
X · 2−2R.

Rate [bits/sample]
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S
N

R
 [
d
B

]

0

5

10

15

20

25

30

35

Real

Approximation

37

Real world signal example: A mono music file is coded using a uniform quantizer
(midtread), followed by Huffman coding. The rate is varied by varying the quan-
tizer stepsize. No limitation of the number of levels is done. For comparison,
we have also estimated the entropy of the quantized signal.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

R [bits/sample]

S
N

R
 [
d
B

]

Huffman

entropy

38

7.11 Vector quantization

Consecutive samples in a signal are often strongly correlated.
Example: 4000 samples from a speech signal, plot [xi, xi+1]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In order to utilize the dependence between samples we can use some form of
source coding that uses the memory of the signal, eg extended Huffman coding or
arithmetic coding where we let the interval division depend on previous symbols.
We can also use the correlation between samples directly in the quantizer, by
quantizing several samples at once, vector quantization.
View L samples from the source as a L-dimensional vector.

x =

x1

x2

...
xL

The quantizer is defined by its reconstruction vectors yi and decision regions
Vi.

39

Example: In two dimensions it can look like

0 1 2 3 4

0

1

2

3

4

The set of reconstruction points {yi}, i = 1 . . .M is usually called the codebook.
Distortion

D =
1

L

M
∑

i=1

∫

Vi

|x− yi|2 · f(x) dx

Compare this to the distortion when doing scalar quantization

D =

M
∑

i=1

∫ bi

bi−1

(x − yi)
2f(x)dx

A scalar quantizer is a onedimensional vector quantizer.
To code the M reconstruction points using a fixed length code we need ⌈logM⌉
bits. Since we’re coding L samples at a time, the resulting rate is

R =
⌈logM⌉

L
[bits/sample]

Alternatively, given dimension L and rate R

M = 2RL

It is of course possible to use some kind of source coding method when doing
vector quantization, but that’s usually not done.
We need to store the codebook both on the coder and the decoder side. It might
also have to be transmitted as side information. If we are using L dimensions,

40

have a rate of R bits per sample and each element of the vectors is stored using
b bits, we need

2RL · L · b
bits to store the whole codebook. The required storage space thus grows very
quickly when we increase the dimension.
If there is no structure in the codebook we have to compare each vector that we
quantize with all the vectors in the codebook in order to find the closest one.
When the dimension L is large this will take a lot of time.

7.12 The LBG algorithm

Usually we don’t know the probability density function f(x) of the source. One
way would be to estimate the density function from a long sequence from the
source (training data).
Instead of doing this, Lloyd’s algorithm can be modified to use the training data
directly.
This variant of the algorithm is usually called the LBG algorithm or K-means.

1. Begin with a starting codebook y
(0)
i , i = 1 . . .M and a set of training

vectors xn, n = 1 . . .N . Let k = 0, D(−1) = ∞ and choose a threshold ǫ.

2. Determine optimal decision regions

V
(k)
i = {xn : |xn − yi|2 < |xn − yj |2 ∀j 6= i}

3. Calculate the distortion D(k) =

M
∑

i=1

∑

xn∈V
(k)
i

|xn − y
(k)
i |2

4. If D(k−1) −D(k) < ǫ stop, otherwise continue.

5. k = k+1. Determine new optimal reconstruction points as the average of

all vectors in each V
(k−1)
i .

6. Repeat from 2.

Just as with Lloyd’s algorithm, we can use alternative stopping conditions.
Depending on how we choose the starting codebook we can get different resulting
codebooks. A few variants:

• Choose M arbitrary vectors.

• Choose M vectors from the training data.

• Generate several random starting codebooks and choose the one that gives
the lowest distortion.

41

• PNN (Pairwise Nearest Neighbour).
Start with each training vector as a reconstruction point. In each step
remove the two vectors that are closest to each other and replace them
with the average of the two vectors. Repeat until we have M vectors.

What do we do if a region becomes empty during a step in the LBG algorithm?
Replace the reconstruction vector that has an empty region with a new vector.
A few variants:

1. Choose the new reconstruction point randomly from the region that has
the highest number of training data.

2. Choose the new reconstruction point randomly from the region that has
the largest distortion.

3. Optimize a two level quantizer in the region that has the largest distortion.

Method 3 is more computationally intensive, but it doesn’t give any benefits
compared to the other methods.

8 Linear predictive coding

Samples close to each other in a signal are often strongly correlated. To get an
efficient coding it’s always a good idea to utilize the correlation (memory).
A general predictive coder utilizes the signal samples up to N steps back in
time to make a prediction (guess) of what the signal sample at the present time
should be and then codes the difference between the prediction and the real
value.
We will concentrate on linear predictors, where the prediction is a linear com-
bination of old sample values. This corresponds to having an AR model of the
source.
Idea: We guess (predict) the signal value at time n as a linear combination of
the previous N sample values.

pn = a1xn−1 + a2xn−2 + . . .+ aNxn−N =

=

N
∑

i=1

aixn−i

The difference between the real value and the predicted value, the prediction
error, dn = xn − pn is quantized, possibly source coded and then sent to the
receiver. The receiver reconstructs dn, calculates pn and can then recreate xn.
Unfortunately, this will not work in practice!
The problem is that the receiver can only recreate a distorted version d̂n of the
prediction error and therefore only a distorted version x̂n of the signal.
In order for the predictive coder to work, the coder must perform the same
prediction that the decoder can perform.

42

The prediction must be done from the reconstructed signal x̂n instead of from
the original signal.

pn = a1x̂n−1 + a2x̂n−2 + . . .+ aN x̂n−N =

=

N
∑

i=1

aix̂n−i

The prediction error dn is quantized and transmitted. Both coder and decoder
recreate d̂n and x̂n = pn + d̂n.
Block schedule of a linear predictive coder and decoder:

✲✒✑
✓✏

✲ Q ✲

❄

✒✑
✓✏

✛P

✻
✲

xn +

−
+

+

dn d̂n

pn

x̂n

✲✒✑
✓✏

✲

✛P

✻

d̂n +

+

x̂n

pn

Predictive coder Predictive decoder

8.1 Optimization of predictor coefficients

How should we choose the predictor coefficients ai?
Given a rate R we want to minimize the distortion

D = E{(xn − x̂n)
2} = E{((pn + dn)− (pn + d̂n))

2} = E{(dn − d̂n)
2}

The quantization makes it hard to calculate optimal ai exactly. If we assume
fine quantization, ie that the number of quantization levels is large, we can do
the approximation

x̂n ≈ xn

ie we will do our calculations as if we predicted from the original signal.
Using fine quantization we also have the approximation

D ≈ c · σ2
d · 2−2R

where σ2
d is the variance of the prediction error and c depends on what type of

quantization we’re doing and the distribution of dn. We can thus minimize the
distortion by minimizing the variance of the prediction error.
Variance of the prediction error:

σ2
d = E{d2n} = E{(xn − pn)

2} =

= E{(xn −
N
∑

i=1

aix̂n−i)
2} ≈

≈ E{(xn −
N
∑

i=1

aixn−i)
2}

43

Differentiate with respect to each aj and set equal to 0, which gives us N
equations

∂

∂aj
σ2
d = −2 · E{(xn −

N
∑

i=1

aixn−i) · xn−j} = 0

This can be written in the form of a matrix equation

RA = P

where

R =

RXX(0) RXX(1) · · · RXX(N − 1)
RXX(1) RXX(0) · · · RXX(N − 2)

...
...

. . . · · ·
RXX(N − 1) RXX(N − 2) · · · RXX(0)

A =

a1
a2
...

aN

, P =

RXX(1)
RXX(2)

...
RXX(N)

and where RXX(k) = E{xn · xn+k} is the auto correlation function of xn.
The solution can be found as

A = R−1P

For the optimal predictor A we get the prediction error variance

σ2
d = RXX(0)−ATP

NOTE: This formula can not be used for other choices of prediction coefficients.

8.2 Prediction gain

With fine quantization the distortion and signal to noise ratio are given approx-
imately as

Dp ≈ c · σ2
d · 2−2R, SNRp = 10 · log10

σ2
x

Dp

where σ2
x is the variance of the original signal.

If we had quantized the original signal directly we would have gotten

Do ≈ c · σ2
x · 2−2R, SNRo = 10 · log10

σ2
x

Do

The difference is referred to as the prediction gain

SNRp − SNRo = 10 · log10
Do

Dp
≈ 10 · log10

σ2
x

σ2
d

44

8.3 Signals with nonzero mean

What do we do if we have a signal with a mean value m 6= 0?

1. If the signal mean value is small compared to the variance we can just use
linear prediction.

2. If not, we can create a new signal yn = xn−m, construct a linear predictor
for yn and send m as side information.

3. Alternatively we can construct an affine predictor

pn =

N
∑

i=1

aixn−i + a0

Disregarding the quantization this will give the same result as alternative
2.

8.4 Multidimensional predictors

We can of course generalize linear prediction to work with multidimensional
signals, like images.
For example, if we have an image signal xij and want to do prediction from the
pixel to the left of and the pixel above the current pixel

pij = a1 · xi,j−1 + a2 · xi−1,j

The optimal predictor is then given by the solution to the equation system

[

E{x2
i,j−1} E{xi,j−1 · xi−1,j}

E{xi,j−1 · xi−1,j} E{x2
i−1,j}

] [

a1
a2

]

=

[

E{xi,j · xi,j−1}
E{xij · xi−1,j}

]

or, expressed using the auto correlation function

[

RXX(0, 0) RXX(1,−1)
RXX(1,−1) RXX(0, 0)

] [

a1
a2

]

=

[

RXX(0, 1)
RXX(1, 0)

]

8.5 Lossless predictive coding

Linear predictive coding can also be used for lossless coding, by removing the
quantization.
Assuming that we have an integer input signal, we must make sure that the
predictor also produces integers, by using some form of rounding when the
predictor coefficients are not integers.
As an example we have lossless JPEG, which can use the predictors

1. pij = Ii−1,j

2. pij = Ii,j−1

45

3. pij = Ii−1,j−1

4. pij = Ii,j−1 + Ii−1,j − Ii−1,j−1

5. pij = ⌊Ii,j−1 + (Ii−1,j − Ii−1,j−1)/2⌋

6. pij = ⌊Ii−1,j + (Ii,j−1 − Ii−1,j−1)/2⌋

7. pij = ⌊(Ii,j−1 + Ii−1,j)/2⌋

9 Colour images

When coding images we usually don’t use the RGB colour space. Instead the
image is described in another colour space, where the pixel values are given
using a luminance (or luma) component (called Y), that tells us how bright
the pixel is (ie basically a grayscale signal) and two chrominance (or chroma)
components (called Cb and Cr) that tells the actual colour of the pixel.
The chrominance components can often be downsampled to a lower resolution,
without a human observer noticing any reduction in image quality.
There are many variants of luminance-chrominance colour spaces, but they are
rather similar to each other.

9.1 Converting from RGB to YCbCr

Suppose that ER, EG and EB are analog values between 0 and 1 that describe
how much red, green and blue there is in a pixel (given eight bit quantization
we have ER = R/255, EG = G/255 and EB = B/255). A typical conversion to
luminance-chrominance is then given by

EY = 0.299 · ER + 0.587 · EG + 0.114 · EB

ECb = −0.169 · ER − 0.331 · EG + 0.500 · EB

ECr = 0.500 · ER − 0.419 · EG − 0.081 · EB

where EY is between 0 and 1 and ECb and ECr are between -0.5 and 0.5. There
are several different variantions of this where the coefficients are different. It is
outside the scope of this course to delve further into colour image theory.
Conversion to 8-bit integer values can be done by

Y = ⌊219 · EY ⌋+ 16
Cb = ⌊224 · ECb⌋+ 128
Cr = ⌊224 · ECr⌋+ 128

10 Transform coding

Consider pairs of consecutive samples from a speech signal.

46

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Consecutive sampels are strongly correlated. If we quantize the samples scalarly,
the quantizer for both sampels must be able to handle large variations in the
signal values. If we instead describe the pairs in a new basis (another coordinate
system) we remove the dependance between the samples and make it easier to
do scalar quantization.

New basis vectors: 1√
2

(

1
1

)

, 1√
2

(

−1
1

)

.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Now we can use different quantizers for the different coordinates, and only one
of the quantizers needs to handle large signal values. This will mean that we can
get a more efficient coding (lower rate at the same distortion, or lower distortion
at the same rate).

10.1 Main idea

1. Split the signal into blocks of size N (or N ×N if the signal is twodimen-
sional). Transform the blocks using a suitable, reversible transform to a
new sequence.

2. Quantize the transform components.

3. Use some kind of source coding on the quantized transform components
(fixed length coding, Huffman, arithmetic coding et c.)

47

10.2 Linear transforms

Block ofN samples from the signal {xn}N−1
n=0 are transformed to a block {θn}N−1

n=0

θn =
N−1
∑

i=0

an,i · xi

All the components of x have the same statistics (variance et c.) but the com-
ponents of θ will have different statistics, depending on position n.

The inverse transform, that recreates {xn} from {θn} is given by

xn =

N−1
∑

i=0

bn,i · θi

The transform and the inverse transform can be written in matrix form as

θ̄ = A · x̄ ; x̄ = B · θ̄

where

x̄ =

x0

x1

...
xN−1

; θ̄ =

θ0
θ1
...

θN−1

and the matrix element at position (i, j) is given by

[A]i,j = ai,j ; [B]i,j = bi,j

The matrices A and B are the inverses of each other, ie B = A−1.

10.3 Orthonormal transforms

We are usually only interested in orthonormal transforms, ie transforms where
B = A−1 = AT .
Orthonormal transforms are energy preserving, ie the sum of the squares of the
transformed signal is equal to the sum of the squares of the original signal

N−1
∑

i=0

θ2i = θ̄T θ̄

= (Ax̄)TAx̄

= x̄TATAx̄

= x̄T x̄ =

N−1
∑

i=0

x2
i

This is often referred to as Parseval’s identity.

48

10.4 The transform as a basis change

The transform can be seen as describing the signal in another basis, ie as a
linear combination of new basis vectors

x̄ = AT θ̄

=

a00 · · · aN−1,0

...
. . .

...
a0,N−1 · · · aN−1,N−1

θ0
...

θN−1

= θ0

a00
...

a0,N−1

+ . . .+ θN−1

aN−1,0

...
aN−1,N−1

The rows of the transform matrix (or the columns in the inverse transform
matrix) are the basis vectors of the new basis.

10.5 Transform properties

Some desirable properties of the transform:

• The transform should concentrate the signal energy to as few components
as possible.

• The transform should decorrelate the transform components, ie if possible
we want E{θi · θj} = 0, i 6= j. This means that we remove all dependance
(memory) between the transform components.

• The transform should be robust with respect to changes in source statis-
tics.

• The transform should be simple and fast to calculate.

All of these properties can not be found in a single type of transform.

10.6 The Karhunen-Loève-transform (KLT)

The KLT is a transform that will completely decorrelate the transform compo-
nents and also give maximal energy concentration.
Assuming we have an input signal that is modelled as a stationary random pro-
cess Xn with mean zero and auto correlation function RXX(k) = E{XnXn+k}.
Given a block size of N , we have signal vectors

x̄ =

Xn

Xn+1

...
Xn+N−1

49

The correlation matrix RX is the matrix

RX = E{x̄x̄T }

The correlation matrix can be expressed using the auto correlation function

RX =

RXX(0) RXX(1) · · · RXX(N − 1)
RXX(1) RXX(0) · · · RXX(N − 2)

...
...

. . . · · ·
RXX(N − 1) RXX(N − 2) · · · RXX(0)

The correlation matrix Rθ of the transformed signal, given a transform A, is
given by

Rθ = E{θ̄θ̄T } = E{Ax̄(Ax̄)T } = ARXAT

If we want the transform to decorrelate the signal, ie diagonalize Rθ (all values
zero except for the main diagonal), we should choose the basis vectors (rows of
A) as the normalized eigenvectors of RX .
For a KLT, the variances of the transform components will be equal to the
eigenvalues of the signal correlation matrix.
In addition to decorrelating the source, the KLT will also be the transform
that gives the maximum energy concentration to a few transform components.
This is the same as saying that the KLT is the transform that minimizes the
geometric mean of the transform component variances

(
N−1
∏

i=0

σ2
i)

1/N

A disadvantage of the KLT is that it is signal dependent, so it has to be trans-
mitted as side information. There is usually also no fast way to perform the
transform.

10.7 The discrete cosine transform (DCT)

The transform matrix C is given by

[C]ij =

√

1
N ; i = 0

√

2
N cos (2j+1)iπ

2N ; i = 1, . . . , N − 1

The DCT is a close relative of the discrete fourier transform (DFT). There are
fast ways of doing a DCT, in the same way that there are fast fourier transforms
(FFT).
The DCT will usually be very close to a KLT for sources where there is a high
correlation between consecutive samples, which includes most natural audio and
image sources.

50

To be more precise, there at least 8 slightly different versions of the DCT.
The above transform (a type II DCT) is the most commonly used version, for
instance in the JPEG and MPEG standards, so it is usually referred to just as
“the DCT”.

10.8 The discrete Walsh-Hadamard transform

A Hadamard matrix HN of size N = 2k is given by

HN =

(

HN/2 HN/2

HN/2 −HN/2

)

where H1 = 1.

The transform matrix in DWHT is a Hadamard matrix, normalized with a
factor 1/

√
N . Usually the rows of the matrix are sorted in frequency order.

Since the transform matrix, apart from the normalizing factor, only contains
±1, the transform is easy to calculate.
However, the DWHT does not give very good energy concentration, and since
the basis vectors are very “square”, any quantization errors will be very visible
or audible.

10.9 Comparison between DCT and DWHT

Basis vectors for 8-point DCT and DWHT

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

DCT DWHT

10.10 Comparison between DCT and KLT

Basis vectors for 8-point DCT and a KLT adapted to a music signal.

51

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

DCT KLT

10.11 Twodimensional signals

For a twodimensional signal (eg an image) we usually take blocks of size N ×N
to transform.
In general we can view this block as a vector of N2 samples and use a transform
matrix of size N2 ×N2.
Usually a separable transform is used. We then consider the block as a matrix
X instead of a vector. A onedimensional transform is applied first to the rows
of X and then to the columns (or the other way, the order will not matter). The
resultat is a matrix Θ of transform components

Θ = AXAT

The inverse transform is given by

X = ATΘA

We can view the block X as a linear combination of new basis matrices αij given
by

αij = āTi āj

where āi and āj are the i:th and j:th rows of A.

X =

N−1
∑

i=0

N−1
∑

j=0

[Θ]ij · αij

A separable transform can always be written as a general transform applied to
a vector of N2 elements, but the reverse is not true.
For a more general description, we can use rectangular blocks of size N × M
instead of square blocks. This is used in some video coding standards.
Basis matrices for an 8× 8 DCT:

52

10.12 Block size

A large block size N will give better concentration of the energy, but the trans-
form will be more complicated to calculate. It will also be harder to adapt the
coder if the source has different statistics in different parts (eg foreground and
background in an image or different parts of a music signal). Large transforms
can also give rise to more noticable quantization errors.
Typical block size for image coding is 8× 8 pixels (JPEG, MPEG, DV)
Typical block sizes for audio coding are 256-2048 samples (Dolby Digital, MPEG
AAC, Ogg Vorbis)

10.13 Distortion

For orthonormal transforms the distortion in the transform domain will be the
same as the distortion in the signal domain. This is because an orthonormal
transform preserves the length of all vectors.
Assume that we quantize and reconstruct the transform vector to θ̂ and inverse
transform to the reconstructed vector x̂. The distortion is then

D =
1

N
||x̄− x̂||2 =

1

N
(x̄− x̂)T (x̄− x̂)

=
1

N
(AT θ̄ −AT θ̂)T (AT θ̄ −AT θ̂)

=
1

N
(θ̄ − θ̂)TAAT (θ̄ − θ̂)

=
1

N
(θ̄ − θ̂)T (θ̄ − θ̂) =

1

N
||θ̄ − θ̂||2

The same reasoning also applies for random signals, with expectation.

53

10.14 Zonal coding

In zonal coding (or zonal sampling) we split the transformed vector (or block)
into a number of parts (zones). All coefficients in the same zone are coded using
the same quantizer and the same source coder.
If we have K zones and zone j has Nj coefficients, we of course have N1 +N2+
. . .+NK = N .
Given that zone j has the rate Rj bits/sample, the average rate R for the whole
coder is

R =

∑K
j=1 Nj ·Rj

N

The zone division, quantization and source coding can be fixed for all blocks, or
they can be changed when needed. This gives us a better possibility to adapt the
coder to a varying signal, but it also means that we get more side information
to transmit.
From now on, assume that we let each transform coefficient be its own zone (ie
all Nj = 1) and that we keep the coders fixed and don’t switch coders between
blocks.
Transform component k is quantized and coded to Rk bits, with a resulting
distortion Dk. Assuming fine quantization, the distortion can be approximated
by

Dk ≈ ck · σ2
k · 2−2Rk

We want to find the bit allocation that minimizes the average distortion

D =
1

N

N−1
∑

k=0

Dk ≈ 1

N

N−1
∑

k=0

ck · σ2
k · 2−2Rk

under the condition that the average rate is fixed

R =
1

N

N−1
∑

i=0

Rk

For simplicity we assume that all transform components have the same type of
distribution and that we use the same type of quantization and source coding.
Then all ck are equal. Lagrange optimization gives (see Sayood for details)

Rk = R+
1

2
log2

σ2
k

(
∏N−1

i=0 σ2
i)

1/N

Note that this can give some components a negative rate. In that case we set
the rate for those components to 0, and redo the bit allocation for the other
components, such that the average rate is still R.
For some types of quantization and coding (Lloyd-Max quantization, quantiza-
tion followed by fixed length coding) we might have the condition that rates
should be integers.

54

For optimal bit allocation the distortion for each component (given that our fine
quantization assumption still holds) is

Dk ≈ c · σ2
k · 2−2Rk =

= c · σ2
k · 2

−2R−log2
σ2
k

(
∏N−1

i=0
σ2
i
)1/N =

= c · σ2
k ·

(
∏N−1

i=0 σ2
i)

1/N

σ2
k

· 2−2R =

= c · (
N−1
∏

i=0

σ2
i)

1/N · 2−2R

We will thus get the same distortion for each transform component. The average
distortion will of course also take this value.

10.15 Transform coding gain

One way of measuring how good a certain transform is, is the transform coding
gain. The transform gives the average distortion and signal to noise ratio

Dt =
1

N

N−1
∑

i=0

Di, SNRt = 10 · log10
σ2
x

Dt

where σ2
x is the variance of the original signal.

Coding without transform to the same rate gives distortion Do and signal to
noise ratio SNRo. The transform coding gain is the difference

SNRt − SNRo = 10 · log10
Do

Dt
≈ 10 · log10

σ2
x

(
∏N−1

i=0 σ2
i)

1/N

The final approximation holds when we have fine quantization and optimal bit
allocation.

10.16 Threshold coding

For each transform block we tell which transform components that have a mag-
nitude over a threshold value. Only these components are quantized and coded,
the rest are set to zero. Which components that are above the threshold needs
to be transmitted as side information for every block.
Often runlength coding of the zeros are used for this side information.
For twodimensional transforms a zigzag scanning of the components are usually
performed, to get a onedimensional signal, before the runlength coding.
In practice, usually no separate thresholding is done. Instead, the components
that are quantized to zero are the ones that are considered to be below the
threshold.
Zigzag scanning for 8 × 8 transform. The DC level in the upper left corner is
usually treated separately.

55

10.17 JPEG

JPEG is an ISO standard (1990) for still image coding. This is still the most
common way of doing lossy image coding.
Uses DCT of size 8× 8 pixels.
1-4 colour components.
Either 8 or 12 bits per colour components. The common file formats JFIF and
EXIF only allow 8 bits per component.
No explicit thresholding, uniform quantization. The step size can be choosen
freely for each of the 64 transform components. Typically the high frequency
components are quantized harder than the low frequency components.
The source coding is either runlength coding of zeros followed by Huffman cod-
ing, or arithmetic coding. Since the arithmetic coder in the standard was pro-
tected by several patents, only Huffman coding is used in practice.
Image quality is controlled by the choice of the step sizes of the 64 quantizers.
Since we can choose them freely and independently of each other, it might be
hard to find the best choice of step sizes for a given average rate or a given
average distortion.
In order to simplify, most JPEG coders (eg digital cameras) only let the user
choose one quality parameter. Each quality parameter will correspond to a
pre-chosen matrix of step sizes. A quantization matrix might look like this

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

56

The difference d from the DC level in the previous block is coded. The Huffman
coding is not done directly on the difference values. Instead a category is formed
according to

k = ⌈log(|d|+ 1)⌉
Stastics are gathered for all categories and a Huffman code is constructed.
The codeword for a difference d consists of the Huffman codeword for k followed
by k extra bits to exactly specify d.

k d extra bits
0 0 −
1 −1, 1 0, 1
2 −3,−2, 2, 3 00, 01, 10, 11
3 −7, . . . ,−4, 4, . . . , 7 000, . . . , 011, 100, . . . , 111
...

...
...

The components are ordered in zigzag order. All runs of zeros are replaced by
the length of the run (min 0, max 15). Just as for the DC component, we form
the category for each non-zero component l as

k = ⌈log(|l|+ 1)⌉

A new symbol alphabet is constructed, consisting of pairs (runlength, category).
We gather statistics for the pairs and build a Huffman code for the new alphabet.
Just as for the DC level, the codeword for each pair is followed by k bits that
exactly tells us what value the non-zero component has.
In the Huffman code we also have two special symbols, (End Of Block) which is
used when all the remaining components in a block are zero and ZRL (Zero Run
Length) which is used when we have to code a run of zeros that is longer than
15. ZRL means 16 zeros. For example, a run of 19 zeros followed by category 5
is described as (ZRL)(3,5).

11 Subband coding

A subband coder works somewhat similarily to a transform coder. Instead of
splitting the signal into different frequancies using a transform, we split the
signal into different frequency bands using a number of bandpass filters. The
different frequency signals can (in theory) be downsampled without destroying
any information, since they have a smaller bandwith than the original signal.
Quantize and source code the different frequency signals.

11.1 Subband coder (M bands)

A subband coder can be described using the following block schedule

57

✲

✲

HM

H1

...

✲

✲

↓ M

↓ M

...

✲

✲

QM

Q1

...

✲

✲

source coder M

source coder 1

...

✲

✲

X

The bandpass filters Hi ; i = 1 . . .M are called analysis filters.
↓ M denotes downsampling with a factor M , ie we only keep every M :th sample
in each subband.
The source coders and quantizers can of course also depend on each other.
The corresponding subband decoder looks like

X̂✲

KM

K1

...

✲

✲

↑ M

↑ M

...

✲

✲

Q−1
M

Q−1
1

...

✲

✲

source decoder M

source decoder 1

...

✲

✲

The bandpass filters Ki ; i = 1 . . .M are called synthesis filters.
↑ M denotes upsampling with a factor M , ie M −1 zeros are inserted after each
sample.

11.2 Recursive filtering

Either we have M actual filters, or we use only two filters (one highpass filter
and one lowpass filter) and then apply the filters recursively to divide the signal
into narrow bands.
If we do the filtering in two steps and do filtering on both the high- and lowpass
branches, we get the following filter structure (the filtering and downsampling
have been combined in the figure.)

58

X

✲

✲

H1/ ↓ 2

H2/ ↓ 2

✲

✲

H1/ ↓ 2

H2/ ↓ 2

✲

✲

✲

✲

H1/ ↓ 2

H2/ ↓ 2

✲

✲

. . .

This gives us a flat filter bank (ie the bandwidth of all bands are the same). In
the frequency domain it looks like

π/2 3π/4 π
ω

π/4

1

Alternatively, if we only do repeated splits on the lowpass branch, we get what
is called a dyadic filterbank.

X

✲

✲

H1/ ↓ 2

H2/ ↓ 2 ✲

✲

✲

H1/ ↓ 2

H2/ ↓ 2 ✲

✲

✲

H1/ ↓ 2

H2/ ↓ 2

✲

✲

. . .

59

The division of the frequency axis using a dyadic filter bank with 4 bands looks
like

π/2 π
ω

π/4

1

π/8

11.3 Filter properties

If we consider the system coder-decoder for a 2-band subband coder without
quantization, we can show (see Sayood) that the reconstructed signal, expressed
in the z-transform, looks like

X̂(z) =
1

2
[H1(z)K1(z) +H2(z)K2(z)]X(z) +

+
1

2
[H1(−z)K1(z) +H2(−z)K2(z)]X(−z)

We’re usually interested in filters that give perfect reconstruction, ie filters where
the reconstructed signal is equal to the original signal, apart from a constant
gain and/or a time delay

X̂(z) = c · z−n0 ·X(z)

Another common demand is that we only want to use filters with a finite impulse
response (FIR).
There are several ways of finding suitable filters for subband coding, eg QMF,
power symmetric filters, wavelets. A few examples:
Haar filter

H1(z) =
1√
2
[1 + z−1] H2(z) =

1√
2
[1− z−1]

K1(z) = H2(−z) K2(z) = −H1(−z)

LeGall filter

H1(z) =
1

4
√
2
[−z2 + 2z + 6 + 2z−1 − z−2]

H2(z) =
1

2
√
2
[−1 + 2z−1 − z−2]

60

K1(z) = H2(−z)

K2(z) = −H1(−z)

Finding suitable filters for a subband coder is a broad field, and goes a bit
outside of the scope of this course. If you are interested in more details, see
Sayood’s book.

11.4 Twodimensional signals

Wehn coding twodimensional signals (ie images), usually only two filters (low-
pass and highpass) are used. The image is filtered horizontally and then verti-
cally with the filter pair so that we get four different frequency bands. Tradi-
tionally we only keep splitting the lowpass-lowpass filtered part. Typically this
is done for a few steps, depending on the size of the image.

HL

LL LH

HH

As an example, given this image

this is what we get after two steps of splits

61

The high frequency bands have been amplified to show the results more clearly.

11.5 Quantization and source coding

In principle we can use the same kinds of methods that are used in transform
coding when we do quantization and source coding.
The most important part is to find an efficient way to do source coding.
In the high frequency bands most of the components will be quantized to 0,
and there is a strong correlation between adjacent components in the same
subband. There is also a correlation between components in different subbands
at the same position in the image (eg an edge in the image will give large values
in several subbands). This can be utilized by the source coder.
If we have a flat filter bank we can do bit allocation in exactly the same way as
in in transform coding (zonal coding).
If we dont have uniform frequency bands, eg from using a dyadic filter bank, we
have to take into account the different sample rates of the different bands. This
is because we have performed different number of subsamplings for the different
bands.

11.6 JPEG 2000

JPEG 2000 is an ISO standard for coding of still images.
The image is first split into a number of rectangular parts (tiles). Normally we
will only have one tile covering the whole image.
Each tile is transformed using a dyadic subband transform (wavelet transform),
using 0-32 splits.
The transformed image is divided into small rectangular blocks of 2k × 2l (2 ≤
k, l ≤ 10; k + l ≤ 12) coefficients for quantization and source coding.
The quantization is uniform.

62

The source coder is a binary arithmetic coder. The coefficents are coded one
bitplane at a time. The coefficients are coded conditioned on surrounding co-
efficents in the same block. The similarity between different subbands is not
used.
JPEG 2000 gives a progressive bitstream, ie its possible to decode just the
beginning of the stream and still get a whole image, but with lower quality.
It’s possible to specify a region of interest, ie a part of the image can be coded
using higher quality than the rest of the image.
1-16384 colour components in the image. Can thus be used for multispectral
and hyperspectral images.
The input image can have up to 38 bits per colour component.
There is also a lossless coding mode, giving slightly worse results than for in-
stance JPEG-LS.

63

