

Solutions to Written Exam in Internetworking TSIN02

20th March 2025

1 a) See	the	course	literature.
-----	-------	-----	--------	-------------

- b) See the course literature.
- c) See the course literature.
- d) See the course literature.
- a) See the course literature.
 - b) See the course literature.
 - c) See the course literature.
- a) See the course literature.
 - b) See the course literature.
 - c) See the course literature.
 - d) See the course literature.
- 4 a) See the course literature.
 - b) See the course literature.
- 5 a) See the course literature.
 - b) See the course literature.

- 6 a) See the course literature.
 - b) See the course literature.
- 7 a) For the first group:

$$512 \le 2^N \Rightarrow N = 9$$
$$32 - 9 = 23$$

$$(512 - 1)_{dec.} = 0.0.1.255_{dot.dec.}$$

$$(50 \cdot 512 - 1)_{dec.} = 0.0.99.255_{dot.dec.}$$

First customer, Subnet: 120.60.0.0/23

First address: 120.60.0.0 Last address: 120.60.1.255

Second customer, Subnet: 120.60.2.0/23

First address: 120.60.2.0 Last address: 120.60.3.255

...

50th customer, Subnet: 120.60.98.0/23

First address: 120.60.98.0 Last address: 120.60.99.255

For the second group of businesses:

$$32 < 2^N \Rightarrow N = 5$$

$$32 - 5 = 27$$

$$(32-1)_{dec.} = 0.0.0.31_{dot.dec.}$$

$$(200 \cdot 32 - 1)_{dec.} = 0.0.24.255_{dot.dec.}$$

First customer, Subnet: 120.60.100.0/27

First address: 120.60.100.0 Last address: 120.60.100.31

Second customer, Subnet: 120.60.100.32/27

First Address: 120.60.100.32 Last Address: 120.60.100.63

. . .

200th customer, Subnet: 120.60.124.224/27

First address: 120.60.124.224 Last address: 120.60.124.255

For the third group of households:

$$12 \le 2^N \Rightarrow 3.584 \dots \le N \Rightarrow N = 4$$

$$32 - 4 = 28$$
$$(2^4 - 1)_{dec.} = 0.0.0.15_{dot.dec.}$$
$$(350 \cdot 16 - 1)_{dec.} = 0.0.21.223_{dot.dec.}$$

First customer, Subnet: 120.60.125.0/28

First address: 120.60.125.0 Last address: 120.60.125.15

Second customer, Subnet: 120.60.125.16/28

First Address: 120.60.125.16 Last Address: 120.60.125.31

...

350th customer, Subnet: 120.60.146.208/28 First address: 120.60.146.208 Last address: 120.60.146.223 The third group will get 16 adresses each instead of 12.

b) Addresses left after allocations:

$$2^{16} - 50 \cdot 512 - 200 \cdot 32 - 350 \cdot 16 = 27936$$

c) Yes! It is possible. For example, for the first business:

$$\frac{512}{8} = 64$$

Each subblock will get 64 adresses.

$$64 \le 2^N \Rightarrow N = 6$$

 $32 - 6 = 26$
 $(64 - 1)_{dec.} = 0.0.0.63_{dot.dec}$

First Subblock, Subnet: 120.60.0.0/26

First adress: 120.60.0.0 Last adress: 120.60.0.63

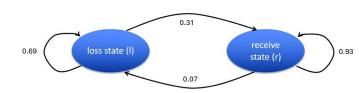
Second Subblock, Subnet: 120.60.0.64/26

First adress: 120.60.0.64 Last adress: 120.60.0.127

...

Eigth Subblock, Subnet: 120.60.1.192/26

First adress: 120.60.1.192 Last adress: 120.60.1.255


8
$$P_r = 5dBm - 0.2\frac{dB}{km} \cdot 80 - 7dB = -18dBm$$

We could choose O/E device C, but this would not consider the future losses. Therefor, Option D is the cheapest and best option.

9 a)
$$P_{r2} = -17 \text{dBm} - 3 \text{dB} = -20 \text{dBm} = 0.01 \text{mW}$$

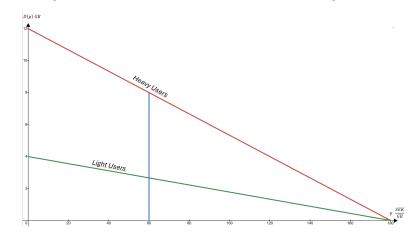
b)
$$P_{r2} = P_{in2} - L_2 \Leftrightarrow P_{in2} = P_{r2} + L_2 = -20 \text{dBm} + 9 \text{dB} = -11 \text{dBm}$$

 $P_{r1} = P_{in1} + L_1 + Amp \Leftrightarrow L_1 = P_{r1} - P_{in1} - Amp = 11 \text{dBm} - 17 \text{dBm} - 9 \text{dB} = -15 \text{dB}$

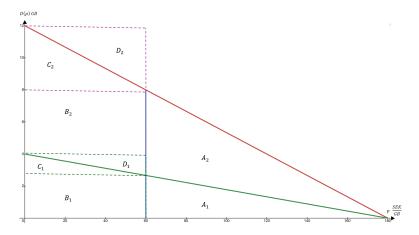
c)
$$P_{\text{laser}} = -11 \text{dBm} + 3 \text{dB} = -8 \text{dBm}$$

10 a)

b)
$$P_l = \frac{p_{l/r}}{p_{l/r} + p_{r/l}} = \frac{0.07}{0.07 + 0.31} \approx 0.1842$$


c)
$$P_r = \frac{p_{r/l}}{p_{l/r} + p_{r/l}} = \frac{0.31}{0.07 + 0.31} \approx 0.8158$$

d)


$$D = P_l \cdot D_l + P_r \cdot D_r \approx 0.1842 \cdot 1 + 0.8158 \cdot \frac{\left(\frac{1}{14}\right)^2}{12} \approx 0.185$$

11 a) (**NOTE**: The numbers in the figures are wrong at the moment, check back a later time for corrected figures.)

Drawing the demand functions for the users we get:

From this calculating $D_1(45) = 11$, $D_2(45) = \frac{33}{7} \approx 4.7143$. With this we get the graph with the different areas drawn in.

The net utility for usage based pricing for heavy users:

Net utility = Utility - Cost =
$$A_2 + B_2 - B_2 = A_2$$

= $\frac{(210 - 45) \cdot 11}{2} = 907.50 \text{SEK}$

And for light users:

Net utility = Utility - Cost =
$$A_1 + B_1 - B_1 = A_1$$

= $\frac{(210 - 45) \cdot 33/7}{2} \approx 389 \text{SEK}$

b) We assume that the price is set such that the heavy users will still pay 45 SEK/GB when using their maximum demand (14 GB), ie that the cost is $45 \cdot 14 = 630$ SEK.

For the net utility or surplus using flat rate, heavy users:

Net utility =
$$A_2 + B_2 + C_2 - (B_2 + C_2 + D_2)$$

= $\frac{210 \cdot 14}{2} - 45 \cdot 14 = 1470 - 630 = 840$ SEK

And for the light users:

Net utility =
$$A_1 + B_1 + C_1 - (B_2 + C_2 + D_2)$$

= $\frac{210 \cdot 6}{2} - 45 \cdot 14 = 630 - 630 = 0$ SEK

c) The ISP should use usage based pricing, because the surplus is positive for both kind of users if that is used.