Cryptography Lecture 12
Post-quantum cryptography

LINKOPING
II.“ UNIVERSITY

Public key cryptography rests on hardness of a mathematical
problem

¢ In RSA, the mathematical problem is factoring. Alice creates
N = pg where p and g are prime numbers, and publishes N (and
the encryption exponent e)

¢ If an eavesdropper can factor N, it is simple to calculate the
decryption exponent d

* The best classical factoring algorithms we have are O(eV")

¢ Quantum computers are said to solve the problem much faster,
complexity is O(n%)

LINKOPING
II." UNIVERSITY

Quantum computers

¢ Quantum computers use the same information-encoding
technique as quantum cryptography

¢ But the similarities end quickly

* Quantum computers use quantum gates to perform calculations

Bob

LINKOPING
II.“ UNIVERSITY

Encoding of information into quantum systems

Coding HV (Horizontal-Vertical), +, encoding 0

—f P

Data 0 Data 1

Coding PM (Plus-Minus 45°), x, encoding 1

Data 1

LINKOPING
II.“ UNIVERSITY

Quantum Algorithms use quantum bits and quantum gates

The qubit is a spin-3-system

1) = [0) and [4) = |1) > -

x = 0 or 1 becomes
1) = a[0) + bei® 1) 3 >~

Gates are unitary maps, or reversible

ot

o1
T

Hadamard gate
_{|o>a|+>=|o>+|1> B~
1) = 1=)=10) - 1)

LINKOPING
II.“ UNIVERSITY

Shor’s algorithm finds the period of a function f

e Remember that a?(™) =1 mod N (where ¢ is the totient function),
so the function f(x) = a* mod N is periodic

1, a a% .., a%M=1 22 —q 4 2 (mod N)
¢ Shor’s algorithm finds a period r (such that f(x + r) = f(x))

® The period can be used to find factors in N (how?)

e Shor’s algorithm needs O(n®) quantum operations

0 —{FH L7

U.ax (%N)

LINKOPING
II." UNIVERSITY

There aren’t any good quantum computers, ..., yet

e Several giant projects are under way

¢ The above picture is from Chalmers, one of the participants of
Wallenberg Center for Quantum Technology

LINKOPING
II." UNIVERSITY

We will probably need to replace RSA with
Post-quantum(-computer) cryptography

Don’t rely on factorization or discrete log

e Use a properly hard problem

Candidates are NP-complete or even NP-hard problems (at least
as hard as NP-complete problems)

But remember the failure of Knapsack crypto

LINKOPING
II." UNIVERSITY

We will probably need to replace RSA with
Post-quantum(-computer) cryptography

e Don’t rely on factorization or discrete log
e Use a properly hard problem

¢ Candidates are NP-complete or even NP-hard problems (at least
as hard as NP-complete problems)

* But remember the failure of Knapsack crypto

® The terms "NP-complete" and "NP-hard" only refers to the hardest
instance of the problem

¢ In cryptography, average hardness is the important property

LINKOPING
II." UNIVERSITY

McEliece or code-based cryptography (1978)

e Use Error-Correcting
Codes

* More precisely, use a
general linear ECC

¢ Code words are
vectors in R” (simplest
example is binary
vectors) g

¢ A linear code is such
that adding two code /
words gives a third
code word (00

LINKOPING
II.“ UNIVERSITY

McEliece or code-based cryptography (1978)

e Use Error-Correcting
Codes

* More precisely, use a
general linear ECC

¢ Code words are
vectors in R” (simplest
example is binary
vectors) g

B118

¢ A linear code is such
that adding two code /
words gives a third
code word (00

LINKOPING
II.“ UNIVERSITY

McEliece or code-based cryptography (1978)

® Errors in transmission
gives random shifts

¢ "Decoding" or "Error
correction” is the same
as finding the closest
code word

(0,0)

LINKOPING
II.“ UNIVERSITY

McEliece or code-based cryptography (1978)

® Errors in transmission
gives random shifts

¢ "Decoding" or "Error
correction” is the same
as finding the closest
code word

LINKOPING
II.“ UNIVERSITY

B118

(0,0)

McEliece or code-based cryptography (1978)

® Errors in transmission
gives random shifts

e "Decoding" or "Error
correction” is the same
as finding the closest
code word

B118

¢ Efficient decoding
exists for known
families of ECC

¢ But decoding a general
linear ECC is NP-hard T

LINKOPING
II.“ UNIVERSITY

Mathematical notation

e Our code has 2* code words, each code word is n bits long, and
can correct t one-bit errors (t is given by the construction)

¢ Our code maps from k-bit strings to n-bit strings using a bit matrix
called generator matrix G
y'=x'G (mod 2)
® To each G, there is a decoding procedure (a function) we denote D

D(y') = D(x'G) = x*

LINKOPING
II." UNIVERSITY

Mathematical notation

e Our code has 2* code words, each code word is n bits long, and
can correct t one-bit errors (t is given by the construction)

¢ Our code maps from k-bit strings to n-bit strings using a bit matrix
called generator matrix G
y'=x'G (mod 2)
® To each G, there is a decoding procedure (a function) we denote D
D(y') = D(x"G) =x*

® The decoding procedure can correct errors, so if z has less than k
ones,
D(y' +2") = D(y") =x

LINKOPING
II." UNIVERSITY

McEliece or code-based cryptography (1978)

Use Error-Correcting Codes

Efficient decoding exists for known families of ECC

Decoding a general linear ECC is NP-hard

Use a code from a known family, but randomize the code so that
the code can’t be identified

LINKOPING
II." UNIVERSITY

Then only general-linear-ECC decoding is available

McEliece or code-based cryptography (1978)

Use Error-Correcting Codes

Efficient decoding exists for known families of ECC

Decoding a general linear ECC is NP-hard

Use a code from a known family, but randomize the code so that
the code can’t be identified

Then only general-linear-ECC decoding is available

But remember the failure of Knapsack crypto

LINKOPING
II." UNIVERSITY

McEliece or code-based cryptography (1978)

® Bob chooses a “binary Goppa code” C (length n with 2% code
words, that corrects t errors), a generator matrix G and the
corresponding decoding algorithm D

* Bob also selects a random k x k binary invertible matrix S and a
random n x n permutation matrix P, and calculates G = SGP

e Bob makes G and t public, and keeps S, P, D (and G) secret

e Alice encrypts m as ¢t = m!G + z* where z is a random n-bit string
with ¢ bits set

® Bob decrypts c as
D(c'P~1)S™! = D((m'SGP + 2")P~1)S~!

= D(m'SG +z'P71)S™!
= D(m'SG)S™*
=(m'S)S~ ' =mf,

LINKOPING
II." UNIVERSITY

Trapdoor one-way function candidate: randomized Goppa code
+ errors

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

e Easy to calculate (xtG + zt) from x

e Hard to invert: to calculate x from (xtG + zt)

The trapdoor is that with knowledge of S, P, and D it is easy to invert, to
calculate x* = D((x*G + zt)P~1)S1

Decoding a general linear code (a) is NP-hard

LINKOPING
II." UNIVERSITY

McEliece or code-based cryptography (1978)

® The family of codes used turns out to be very important

¢ The binary Goppa codes used in the initial proposal are basically
the only family that works

¢ For example, Reed-Solomon codes enables a “structural attack,”
an efficient algorithm for randomized RS codes

® The best known general-linear-ECC decoder is “information set
decoding,” the initial key size 262 kbit gives ~60 bits of security

¢ Current recommendation is 8.4 Mbit keys (!)

* On the positive side, system is faster than RSA

LINKOPING
II." UNIVERSITY

More recent candidate: Lattice problems

e A lattice in R" is
defined by a basis g;
with k elements, kK < n

¢ |t consists of the points

k
ZX;g,‘IXtG, Vx; € Z
i=1

® The Shortest Vector g
Problem (SVP) is to /
find the shortest
nonzero vector in a
lattice

(0,0)

LINKOPING
II.“ UNIVERSITY

More recent candidate: Lattice problems

e A lattice in R" is
defined by a basis g;
with k elements, kK < n

¢ |t consists of the points

k
ZX;g,‘IXtG, Vx; € Z
i=1

® The Shortest Vector g
Problem (SVP) is to /
find the shortest
nonzero vector in a
lattice s

LINKOPING
II.“ UNIVERSITY

More recent candidate: Lattice problems

e A lattice in R" is
defined by a basis g;
with k elements, kK < n

¢ |t consists of the points

k
ZX;g,‘IXtG, Vx; € Z
i=1

® The Shortest Vector
Problem (SVP) is to =
find the shortest
nonzero vector in a
lattice ©0 s

\\

\
\
o

LINKOPING
II.“ UNIVERSITY

The Shortest Vector Problem

e SVP is NP-hard

¢ Checking if there exists
a vector shorter than ~,
or GapSVP,, is also
NP-hard

* But this is worst-case
hardness

* A generic instance may T~ 81
have an efficient N 1
solution

® Another knapsack
crypto?

(0,0)

B \}
TN\
al

LINKOPING
II.“ UNIVERSITY

The Shortest Vector Problem

® GapSVP, is NP-hard,
worst-case complexity

® The way forward is to
randomize the lattice

® Problem is, how do we
randomize the basis?

e No upper limit to ||g;||

* No simple link between N L
properties of the basis,
~, and instance
complexity (0,0)

2 \}
jmaii
Al

LINKOPING
II.“ UNIVERSITY

Reformulate: Mod-g-vector problems

Instead use m vectors h; with n coordinates mod g, both m and
qg>n

An Integer Solution is a nontrivial solution to the equation

Zh;z,- =Hz=0 mod q
i=1

e Gaussian elimination works, if no restrictions are added

The Short Integer Solution problem (SIS) is to find a “short”
nonzero solution (such that ||z|| < §)

LINKOPING
II." UNIVERSITY

Reformulate: Error-correcting codes (mod q)

e Compare with
error-correcting codes

¢ Code words are
solutions to the parity
check equation

Hz=0 modgqg

(0,0)

LINKOPING
II.“ UNIVERSITY

Reformulate: Error-correcting codes (mod q)

e Compare with
error-correcting codes

¢ Code words are
solutions to the parity
check equation

Hz=0 mod q

* An error is detected if
the syndrome is
nonzero

(0,0)

LINKOPING
II.“ UNIVERSITY

Reformulate: Error-correcting codes (mod q)

e Compare with
error-correcting codes

¢ Code words are
solutions to the parity
check equation

Hz=0 modgqg
® An error is detected if 1
the syndrome is ‘\
nonzero {
® An SIS solution is a \
short code word z ©0.0) 3 ’

LINKOPING
II.“ UNIVERSITY

Reformulate: Error-correcting codes (mod q)

Compare with
error-correcting codes

Code words are
solutions to the parity
check equation

Hz=0 modgqg

An error is detected if
the syndrome is
nonzero

An SIS solution is a
short code word z

LINKOPING
UNIVERSITY

(0,q)

(9.9)

(0,0)

(3.0)

Reformulate: Short Integer Solution problem

¢ SIS is almost “GapSVP
mod g”
(0,q) (9,q)
/ \
JARNR
N A
\\//
0.0 B)

LINKOPING
II.“ UNIVERSITY

Reformulate: Short Integer Solution problem

¢ SIS is almost “GapSVP
mod g”

e For large g Gaussian
elimination gives an 0.9) X
efficient solution

/
71 N
/
©.0) 3 w0

LINKOPING
II.“ UNIVERSITY

Reformulate: Short Integer Solution problem

¢ SIS is almost “GapSVP
mod g”

e For large g Gaussian
elimination gives an 0.9))
efficient solution V4 N

® For small 3 there are
no solutions

N

(0,0) (3.0)

LINKOPING
II.“ UNIVERSITY

Reformulate: Short Integer Solution problem

SIS is almost “GapSVP
mod g”

For large g Gaussian
elimination gives an
efficient solution

For small 3 there are
no solutions

Perhaps there is a
region in between
where the problem is
hard, on average?

LINKOPING
UNIVERSITY

(0,q)

(9.9)

(0,0)

(3.0)

The Short Integer Solution problem is hard on average

e Use m > nlogq and
8> m

e Problem is trivial if
8 > g, a common

choiceis g ~ n® > 3 ©.d) i @
' N\ /]

* Solving SIS for // \\
uniformly random H —] ~]
with high probability N ~

z N A
solving GapSVP;
with probability \.l
exponentially close to 1 COF 1 3 (.0)

LINKOPING
II.“ UNIVERSITY

SIS hash function (Ajtai 1996)

® Let m > nlog g, choose random n-by-m matrix H of integers
mod g, and let
hu(x) = Hx

® The hash function hy from bitstrings length m to bitstrings length n
is collision-resistant

LINKOPING
II.“ UNIVERSITY

SIS hash function (Ajtai 1996)

® Let m > nlog g, choose random n-by-m matrix H of integers
mod g, and let
hu(x) = Hx

® The hash function hy from bitstrings length m to bitstrings length n
is collision-resistant

¢ A collision hy(x) = hy(x") implies that H(x — x’) =0
® Then z = x — x' is a solution to SIS, because ||z|| < /m

e Ifitis easy to find collisions, it is easy to solve SIS

LINKOPING
II." UNIVERSITY

How to choose random H that has a short solution

* [t is simple to choose a random matrix mod q, but that does not
guarantee existence of a short solution

e The trick is to use a random matrix H and a random vector %, and
then generate a larger matrix H with a short solution

® The process is called “reducing x modulo the lattice”

LINKOPING
II." UNIVERSITY

How to choose random H that has a short solution

* [t is simple to choose a random matrix mod q, but that does not
guarantee existence of a short solution

e The trick is to use a random matrix H and a random vector %, and
then generate a larger matrix H with a short solution

® The process is called “reducing x modulo the lattice”

e Letm=m—1> nlogq and draw uniform random n x m matrix H
and binary m-element vector x

LINKOPING
II." UNIVERSITY

How to choose random H that has a short solution

* [t is simple to choose a random matrix mod q, but that does not
guarantee existence of a short solution

e The trick is to use a random matrix H and a random vector %, and
then generate a larger matrix H with a short solution

® The process is called “reducing x modulo the lattice”

e Letm=m—1> nlogq and draw uniform random n x m matrix H
and binary m-element vector x

e Add a column to H and a row to X,

H=[Hl - hg®)] = [AI-Fx], x= m

LINKOPING
II." UNIVERSITY

How to choose random H that has a short solution

* [t is simple to choose a random matrix mod q, but that does not
guarantee existence of a short solution

e The trick is to use a random matrix H and a random vector %, and
then generate a larger matrix H with a short solution

® The process is called “reducing x modulo the lattice”

e Letm=m—1> nlogq and draw uniform random n x m matrix H
and binary m-element vector x

e Add a column to H and a row to X,

H=[Hl - hg®)] = [AI-Fx], x= m

LINKOPING
II." UNIVERSITY

Then ||x|| < /m, and Hx = Hx — Hx = 0

What is the distribution of H?

¢ H and x are uniform (mod g and mod 2), so what about H?

LINKOPING
II.“ UNIVERSITY

What is the distribution of H?

¢ H and x are uniform (mod g and mod 2), so what about H?

e Observation: hz is not only collision resistant, the parameter H
indexes a Universal-2 hash function family

B Leftover hash lemma: If h5 is a Universal-2 hash function family, P‘

is uniform and x has high min-entropy, then the pair H, h5(x) is
close (in statistical distance) to being uniform, i.e.,

A= [ﬁ| - fw(i)} & uniform

LINKOPING
II." UNIVERSITY

(Remember:) (Trapdoor) One-way functions

A (trapdoor) one-way function is a function that is easy to compute but
computationally hard to reverse. Examples:

RSA (factoring)
Knapsack (NP-complete but insecure with trapdoor)

Diffie-Hellman + ElGamal (discrete log)
EC Diffie-Hellman + EC ElGamal (EC discrete log)

The hash function family {hy} is Universal-2, so with H (almost)
uniformly distributed, hash functions are collision resistant
(C one-way-hash), so we have

¢ Linear random hash mod g (SIS)

Actually, this is the only one-way (hash) function used in all of lattice
cryptography

LINKOPING
II." UNIVERSITY

Learning With Errors (Regev 2005)

¢ Use m vectors g; with n coordinates mod g, both mand g > n

* You are now given noisy data on the form

m
c'=s'G+e’, orc=s'gi+e= Zsjg,-j +e, modgq
j=1

® The “noise” e is normally integer-Gaussian, stdev ag > /n

Egg ?E???(EITTTUWIWTITTTTFO?M& .

¢ Learning With Errors (LWE) is the mathematical problem to find s

LINKOPING
II." UNIVERSITY

Learning With Errors

® LWE: Find s given
noisy data on the form
ct =siG + et

¢ Decision-LWE (DLWE):
Is there an s so that ¢ (0.9) (9.9)

has the distribution of T
StG —+ et? G

o (D)LWE is NP-hard

¢ Solving (D)LWE in the

average case
=

solving (D)LWE in the
hard case

(0,0) (3,0)

LINKOPING
II.“ UNIVERSITY

Learning With Errors

e DLWE: is it possible to
decode? (NP-hard)

¢ Solving DLWE in the

average case
=

solving DLWE in the
hard case

(0,q)

(9.9)

* We are still relying on
the hardness of
decoding general linear
codes

LINKOPING
II.“ UNIVERSITY

(0,0)

(3,0)

Example of cryptosystem with LWE (GPV 2008)

Bob draws a random n x m matrix G mod g and a random m-bit
o — _ —_ X

string X, and sets G = [G| — hz(x)] = [G| — Gx] and x = M SO

that Gx =0

Bob makes G public and keeps x secret

Alice draws a random n-integer s and random integer-Gaussian e
(mod g), and encrypts the single bit b as
ct=s'G+e"+(0,0,...b)[q/2]
Bob decrypts c as

c'x =s'Gx +e'x + b|q/2| =e'x+ b|q/2]| ~ bq/2

LINKOPING
UNIVERSITY

Security of example cryptosystem with LWE (GPV 2008)

e Secret key is x, public key is G = [G| — hz(X)] = [G| — GX]

e Eve can'’t recover X efficiently, because then SIS would be simple
to solve

e Ciphertextisc' =s'G +e' + (0,0, ..., b)|q/2]

e If b = 0 then c is distributed as s*G + et
If b = 1then no s makes c distributed as s!G + e!

¢ |f Eve can recover b, she can also solve DLWE (“Is there an s so
that...?”)

e But DLWE is hard (on average) so cryptosystem is secure

LINKOPING
II." UNIVERSITY

McEliece vs LWE

McEliece:
e Security rests on hardness of decoding general linear code
e Encryption is into a code word, ¢t = mtG + z*
® Uses random code from one particular subfamily of codes

¢ Choice of code family is crucial for security

LWE-based encryption:
e Security rests on hardness of decoding general linear code
e Encryption is into the noise, c* =s'G +e* + (0,0, ..., b)|q/2]
® Uses random general linear code

* Average case hardness is the same as hardest case

LINKOPING
II." UNIVERSITY

(Trapdoor) One-way functions

A (trapdoor) one-way function is a function that is easy to compute but
computationally hard to reverse. Examples:

RSA (factoring)

Knapsack (NP-complete but insecure with trapdoor)

Diffie-Hellman + ElGamal (discrete log)
EC Diffie-Hellman + EC ElGamal (EC discrete log)
Lattice crypto (LWE, SIS, DLWE)

We also have a strongly collision-resistant hash function

¢ Linear random hash mod g (SIS)

LINKOPING
II." UNIVERSITY

