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5 See the course literature.

6 a) The lowest possible rate is given by the entropy rate of the
source. For this memoryless source it is

H(X) ≈ 2.0087



b) Code 3 is not uniquely decodable and is therefore not usable
for lossless coding.

Code 1 gives the rate 2.05 bits/symbol for the given source.
Code 2 gives the rate 2.2 bits/symbol for the given source.

Thus, code 1 is the best choice for the given source.

7 See the course literature.

8 a) A Huffman code for single symbols will give the rate 1.2 bits/symbol
and is therefore not enough. We need to code at least two sym-
bols at a time.

One Huffman code (there are others) for pairs is given by

symbols codeword codeword length
aa 0 1
ab 100 3
ac 1100 4
ba 101 3
bb 1110 4
bc 11110 5
ca 1101 4
cb 111110 6
cc 111111 6

The code has a mean codeword length of 1.8675 bits/codeword
and a rate of 0.93375 bits/symbol.

b) The intervall corresponding to the sequence is [0.76, 0.7856)
with size 0.0256. We will need at least ⌈− log

2
0.0256⌉ = 6 bits

in the codeword, maybe one more. The smallest six bit binary
number inside the interval is 0.110001, and all numbers starting
with these bits are also inside the interval. Thus, six bits are
enough and the codeword is thus 110001.

9 The distribution is a triangle distribution, symmetric around the
origin. This means that the three reconstruction levels are located
symmetrically, ie y1 = −y3, y2 = 0 and y3. The decision borders
should be halfway between the reconstruction levels, ie b0 = −1,
b1 = −b2, b2 = y3

2
and b3 = 1. Thus, we only have to find one

unknown value.

The reconstruction levels should be in the center of gravity of each



area, which gives us the equation.

y3 =

∫

1

b2
x · fX(x)dx
∫

1

b2
fX(x)dx

=
1− 3b2

2
+ 2b3

2

3− 6b2 + 3b2
2

Since y3 = 2b2 we finally arrive at the equation

4b3
2
− 9b2

2
+ 6b2 − 1 = 4(b2 − 1)2(b2 −

1

4
) = 0

where only the root b2 =
1

4
is a reasonable solution.

Thus, the decision borders are -1, −1

4
, 1

4
and 1. The reconstruction

levels are −1

2
, 0 and 1

2
.

The distortion is given by

D = 2

(

∫

1/4

0

x2(1− x)dx+

∫

1

1/4

(x−
1

2
)2(1− x)dx

)

=
5

192

10 5 bits/pixel can be seen as fine quantization, which means that
we can ignore the effect of the quantization on the predictor, i.e.,
we assume that the prediction is made on original values of Yn.
Since we are free to choose the type of quantization too, we of
course do uniform quantization followed by entropy coding. Again
we use our fine quantization approximation, and assume that the
prediction error will be gaussian, giving us the distortion

D ≈ σ2

d ·
πe

6
· 2−2R

where σ2

d is the variance of the prediction error, and R = 5.

We first try to use a one-step predictor pn = a1 · Ŷn−1 and find a1
that minimize σ2

d

σ2

d = E{(Yn − pn)
2} ≈

≈ E{(Yn − a1 · Yn−1)
2} =

= (1 + a2
1
)RY Y (0)− 2a1 · RY Y (1)

Differentiate with respect to a1 and set equal to 0, which gives us
the solution

a1 =
RY Y (1)

RY Y (0)
≈ 0.9234

σ2

d ≈ 2.9235



The resulting signal to noise ratio is

SNR ≈ 10 · log10
σ2

Y

σ2

d
πe
6
2−2R

≈ 36.9 [dB]

which is not good enough.

We instead use the predictor pn = a1 · Ŷn−1 + a2 · Ŷn−2 and find a1
and a2 that minimize σ2

d

σ2

d = E{(Yn − pn)
2} ≈

≈ E{(Yn − a1 · Yn−1 − a2 · Yn−2)
2} =

= (1 + a2
1
+ a2

2
)RY Y (0)− 2a1 ·RY Y (1)− 2a2 · RY Y (2) + 2a1a2 · RY Y (1)

Differentiate with respect to a1 and a2 and set equal to 0, which
gives us the solution
(

a1
a2

)

=

(

RY Y (0) RY Y (1)
RY Y (1) RY Y (0)

)

−1(

RY Y (1)
RY Y (2)

)

≈

(

1.3613
−0.4742

)

σ2

d ≈ 2.2660

The resulting signal to noise ratio is

SNR ≈ 10 · log10
σ2

Y

σ2

d
πe
6
2−2R

≈ 38.0 [dB]

which is better than the requested 37.5 dB.

Thus, the shortest predictor that solves the problem is a two-step
predictor.

11 Variances for the four transform components:

σ2

0
= E{θ2

0
} =

1

4
E{(X0 +X1 +X2 +X3)

2} =

=
1

4
(4RXX(0) + 6RXX(1) + 4RXX(2) + 2RXX(3)) ≈ 3.5699

σ2

1
= E{θ2

1
} =

1

20
E{(3X0 +X1 −X2 − 3X3)

2} =

=
1

20
(20RXX(0) + 10RXX(1)− 12RXX(2)− 18RXX(3)) ≈ 0.2799

σ2

2
= E{θ2

2
} =

1

4
E{(X0 −X1 −X2 +X3)

2} =

=
1

4
(4RXX(0)− 2RXX(1)− 4RXX(2) + 2RXX(3)) ≈ 0.09369

σ2

3
= E{θ2

3
} =

1

20
E{(X0 − 3X1 + 3X2 −X3)

2} =

=
1

20
(20RXX(0)− 30RXX(1) + 12RXX(2)− 2RXX(3)) ≈ 0.05650



Alternatively you can calculate the variances as the diagonal ele-
ments of A ·RX ·AT , where

RX =









1 0.91 0.912 0.913

0.91 1 0.91 0.912

0.912 0.91 1 0.91
0.913 0.912 0.91 1









The average rate should be 2 bits/sample, so we should allocate
2·4 = 8 total bits to the four transform components. The distortion
is minimized if we allocate four bits to θ0, two bits to θ1, one bit to
θ2 and one bit to θ3. The average distortion is

D ≈
1

4
(0.009497·σ2

0
+0.1175·σ2

1
+0.3634·σ2

2
+0.3634·σ2

3
) ≈ 0.03034

The signal to noise ratio is

10 · log
10

σ2

X

D
= 10 · log

10

1

D
≈ 15.18 [dB]

If we instead use a Hadamard transform, we have the transform
matrix

A =









1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2
1/2 −1/2 1/2 −1/2









Noting that θ0 and θ2 are exactly the same as for the polynomial
transform, we ger the transform component variances

σ2

0
≈ 3.5699

σ2

1
= E{θ2

1
} =

1

4
E{(X0 +X1 −X2 −X3)

2} =

=
1

4
(4RXX(0) + 2RXX(1)− 4RXX(2)− 2RXX(3)) ≈ 0.2501

σ2

2
≈ 0.09369

σ2

3
= E{θ2

3
} =

1

4
E{(X0 −X1 +X2 −X3)

2} =

=
1

4
(4RXX(0)− 6RXX(1) + 4RXX(2)− 2RXX(3)) ≈ 0.08631

The optimal bit allocation is the same as for the polynomial trans-
form, which gives the distortion

D ≈
1

4
(0.009497·σ2

0
+0.1175·σ2

1
+0.3634·σ2

2
+0.3634·σ2

3
) ≈ 0.03218



and the signal to noise ratio

10 · log
10

σ2

X

D
= 10 · log

10

1

D
≈ 14.92 [dB]

That is, the Hadamard transform is 0.25 dB worse.


