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Abstract We propose a conjugate logic that can capture the
behavior of quantum and quantum-like systems. The pro-
posal is similar to the more generic concept of epistemic
logic: it encodes knowledge or perhaps more correctly, pre-
dictions about outcomes of future observations on some sys-
tems. For a quantum system, these predictions are state-
ments about future outcomes of measurements performed
on specific degrees of freedom of the system. The pro-
posed logic will include propositions and their relations in-
cluding connectives, but importantly also transformations
between propositions on conjugate degrees of freedom of
the systems. A key point is the addition of a transforma-
tion that allows to convert propositions about single systems
into propositions about correlations between systems. We
will see that subtle choices of the properties of the transfor-
mations lead to drastically different underlying mathemat-
ical models; one choice gives stabilizer quantum mechan-
ics, while another choice gives Spekkens’ toy theory. This
points to a crucial basic property of quantum and quantum-
like systems that can be handled within the present conju-
gate logic by adjusting the mentioned choice. It also enables
a discussion on what behaviors are properly quantum or only
quantum-like, relating to that choice and how it manifests in
the system under scrutiny.
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1 Introduction

Due to the current fast development of technology towards
quantum information processing, there is great interest in
different tools for understanding the behavior of quantum
systems. To model this processing, often a digital informa-
tion representation is used. This calls for a suitable associ-
ated logic. Of course, there are already well-known logics to
choose from (see e.g., Coecke, Moore, and Wilce 2000, and
references therein).

Quantum logic was proposed already by Birkhoff and
von Neumann (1936), by extending the language of stan-
dard logic to encompass Hilbert space structure. In their pro-
posal, they start from the Hilbert space description itself and
describe a logic that, for example, replaces logical negation
with orthogonality in the Hilbert space. More recently, there
has been a drive to avoid using any Hilbert space structure
as a postulate, and to look instead at other ways of build-
ing up a mathematical structure that eventually arrives at
quantum mechanical behavior. This has grown into an entire
field of scientific investigation (Hardy 2001; Pawłowski et
al. 2009; Chiribella, D’Ariano, and Perinotti 2011; Masanes
and Müller 2011, to give a few examples). Part of the discus-
sion is the difficulty to avoid a direct postulate of an under-
lying Hilbert space. Here we will make yet another attempt
to build up a structure that avoids inserting Hilbert space
structure by hand. We will, however, still retain propositions
that relate to phase space as in Birkhoff and von Neumann
(1936), but not the direct relation used there where proposi-
tions are subsets of phase space.

Our propositions will instead concern predictions of fu-
ture measurement outcomes of conjugate degrees of free-
dom. There is a connection to the concept of conjugate cod-
ing as proposed already in the 1970’s by Wiesner (but only
published in 1983), but there is also an important difference.
Conjugate coding is about encoding data into conjugate de-
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grees of freedom. Here we aim for the converse: conjugate
logic is intended to describe knowledge about the system in
the form of predictions of future measurement outcomes of
conjugate degrees of freedom, making this a more epistemic
approach.

Epistemic logic has already been studied as a subfield of
epistemology concerned with logical approaches to knowl-
edge, belief and related notions. While any logic with an
epistemic interpretation may be called an epistemic logic,
the most widespread type of epistemic logic is that of modal
logics (von Wright 1951). Epistemic modal logic is con-
cerned with agents, their knowledge, and beliefs. It for-
mally encodes for example, one agent’s belief about another
agent’s knowledge by adding knowledge predicates on top
of standard logic. Unfortunately this is not well adapted to
the quantum-mechanical situation, where so-called quantum
contextuality (Kochen and Specker 1967) prohibits assign-
ing a consistent set of values to the complete set of proposi-
tions in the underlying standard logic.

For this reason, the logic we aim for here is intended to
capture fundamental uncertainty within the logic itself: that
statements not only have an unknown truth value, but sim-
ply do not possess any intrinsic truth value. In this sense it is
no longer a question of incomplete knowledge about an ex-
isting truth value, but there are composite propositions that
are fundamentally uncertain. The conjugate logic we pro-
pose here will allow but does not force quantum behavior,
and will capture the notion of incomplete knowledge in the
strongest possible sense: it will contain fundamentally un-
certain composite propositions.

In this logic, propositions will concern predictions of
quantum-like measurement outcomes on physical systems.
Logic propositions then discretize the measurement out-
comes into true/false, in general being sentences on the form
“the measurement outcome will lie between a and b”. Here,
we will restrict ourselves to dichotomic measurement out-
comes, without loss of generality. Such a dichotomic mea-
surement is usually associated with a spin measurement
along the Z axis in three-dimensional space, forming the
first coordinate in a two-dimensional discrete phase space
(Wootters 2003). The second coordinate is usually associ-
ated with a spin-X measurement, and diagonal lines in the
discrete phase space are associated with spin-Y measure-
ment.

Our proposed conjugate logic will contain these con-
jugate degrees of freedom, and importantly also transfor-
mations between them, not only on single systems but
also transformations involving correlations between sys-
tems. This makes our approach different from other three-
valued logics that attempt to capture aspects of quantum
mechanics, but do not include conjugate degrees of freedom
as an essential part, nor transformations between them, see
e.g., Reichenbach (1944). In addition, the inclusion of these

transformations enables a logic-language basis for stabilizer
quantum mechanics complete with Clifford-group transfor-
mations (Calderbank et al. 1998; Gottesman 1998a; Gottes-
man 1998b).

Stabilizer quantum mechanics is an important tool in
quantum information processing. Our construction will be
able to reproduce the behavior of this subset of quan-
tum mechanics, but will avoid postulating an underlying
Hilbert space. It will also enable a logic-language basis for
Spekkens’ toy theory and extensions of it (Spekkens 2007;
Wallman and Bartlett 2012; Blasiak 2013; Johansson and
Larsson 2019; Lillystone and Emerson 2019) that are useful
in foundational considerations on these issues. Let us now
turn to the explicit construction.

2 Conjugate logic propositions, negation, conjunction
and disjunction

We start with something that looks reasonably familiar; a
three-valued logic where one truth value will denote an inde-
terminate outcome. Note that we immediately deviate from
standard logic by adding several conjugate degrees of free-
dom intending to capture the idea that not all measurements
are compatible, meaning simultaneously predictable. Stan-
dard propositional logic contains propositions, usually de-
noted p and q, that can have truth values in {false,true}
or {0,1}. In the new logic an atomic proposition is a pre-
diction for the outcome of a measurement, that is, a state-
ment on the form “measurement of the Z degree of free-
dom would give the outcome 0”, denoted 〈Z〉. We choose
“outcome 0” because this gives a natural correspondence to
the stabilizer formalism where the notation 〈·〉 is used for a
stabilizer, a transformation that keeps a quantum state un-
changed. There, 〈Z〉 is the notation for the stabilizer of the
quantum state |0〉, which gives a direct connection to the
proposition above.

Similarly, we add propositions to two other conjugate
degrees of freedom whose corresponding propositions 〈X〉
and 〈Y 〉 are statements on predictions about these measure-
ment outcomes. Propositions of this kind are atomic much
like simple propositions of ordinary propositional logic, and
serve as building blocks for more complex expressions be-
low. Statements on measurement outcomes of different sys-
tems will be denoted by numerical indexes Z j or by position
in a string of symbols.

Propositions can be true or false just as in standard
propositional logic. They may also hold no truth value
meaning that the measurement outcome is indeterminate,
uncertain, unknown, or cannot be predicted, denoted “?”. In
some presentations of propositional logic one can see “T”
for true (1) and “F” for false (0), so we could add “I” for
indeterminate (Reichenbach 1944), in what follows we will
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use “?” for readability. Importantly, the conjugate proposi-
tional logic we construct here will contain statements that
cannot all have truth values simultaneously. Although we
will assume in what follows that at least one statement per
system is allowed to have a truth value.

Just as in standard logic we can form connectives. In
standard logic, the unary connective NOT (¬) converts a
proposition into its negation. It is natural to extend this no-
tion such that the conjugate logic NOT gives truth value 0
if the negated proposition has truth value 1, and gives 1 if
the negated proposition have truth value 0; finally, it gives
the indeterminate “?” truth value if the negated proposition
is indeterminate “?”.

Now consider the standard logic conjunction AND (∧):
it gives truth value 0 if one of the constituent propositions
has truth value 0, and 1 if both the constituent propositions
have truth value 1. It is natural to extend this notion so that
the conjugate logic conjunction has exactly this behavior
and that it gives indeterminate “?” otherwise, i.e., in the case
when at least one constituent is indeterminate and the other
is either indeterminate or 1. For example, we denote “[mea-
surement of the Z1 degree of freedom would give the out-
come 0] AND [measurement of the X2 degree of freedom
would give the outcome 0]” by 〈Z1〉 ∧ 〈X2〉; or sometimes
〈ZI〉∧ 〈IX〉 or 〈ZI, IX〉.

Conjugate logic disjunction (OR, ∨) can be defined sim-
ilarly by extending the standard truth table to cases with
indeterminate constituent propositions. Thus, the conjugate
logic disjunction gives truth value 1 if one of the constituent
propositions has truth value 1, truth value 0 if both the con-
stituent propositions have truth value 0, and gives indetermi-
nate “?” otherwise, i.e., if one of the constituents is indeter-
minate and the other is either indeterminate or 0. We see that
the conjugate logic conjunction and disjunction mirror each
other just as they do in standard logic (see “de Morgan’s
laws” in Table 1).

Finally, conjugate logic exclusive disjunction (XOR, Y)
is also an extension of the standard logic truth value 1 if
one of the constituent propositions has truth value 1 and the
other 0, and truth value 0 if both the constituent propositions
have truth value 0 or 1. We simply let it give indeterminate
“?” if either or both of the constituents are indeterminate.

3 Conjugate logic material and logical conditionals,
tautology and contradiction

We have now come to the conjugate logic material condi-
tional and material biconditional (→ and ↔), where the
qualifier “material” is used to distinguish the connective (→)
from the “formal” conditional (⇒) as Russell (1903) writes,
or the “logical” conditional as it is now more commonly
known. Perhaps jokingly, one could add that a better name

would be immaterial conditional instead of material condi-
tional when describing quantum and quantum-like systems.
We will not press the issue more here, after all, quantum
systems are the dreams that stuff is made of.

To construct material conditional and biconditional that
incorporates an intrinsic uncertainty, we will take a closer
look at two alternatives. One is to construct condition-
als such that they follow identities from ordinary proposi-
tional logic. For example, then p↔ q would be identical
to (p∧ q)∨ (¬p∧¬q). However, this does not capture the
desired behavior well: the latter expression gives an inde-
terminate value “?” if both p and q are indeterminate, while
the material biconditional should compare if the truth values
are equal. Thus, in our view, a better alternative is to have the
material biconditional (EQUIVALENT TO,↔) compare the
two constituent propositions and have p↔ q be 1 if p and
q have the same truth value, and 0 otherwise. In particular,
p↔ q is 1 if both p and q are indeterminate. The logical bi-
conditional between two composite propositions p⇔ q can
now be defined as usual, namely as the situation in which
p↔ q is always true. This now coincides with the statement
that p and q have identical truth table entries.

The material conditional (IMPLIES,→) can similarly be
extended to have p→ q be 1 if p is 0, if q is 1, or (in addi-
tion to the standard definition) if p and q have the same truth
value, and 0 otherwise. The additional clause captures the
notion of implication in the case when both p and q are inde-
terminate, encoding that when p is indeterminate we cannot
draw any conclusion about q so that an indeterminate truth
value is acceptable by the connective. This completes the list
of connectives in Table 1, and allows us to define the logical
conditional between two composite propositions p⇒ q as
the situation in which p→ q is always true.

Table 1 Conjugate logic connectives

p q ¬p p∧q p∨q pYq p→ q p↔ q

0 0 1 0 0 0 1 1
0 ? 1 0 ? ? 1 0
0 1 1 0 1 1 1 0
? 0 ? 0 ? ? 0 0
? ? ? ? ? ? 1 1
? 1 ? ? 1 ? 1 0
1 0 0 0 1 1 0 0
1 ? 0 ? 1 ? 0 0
1 1 0 1 1 0 1 1

Table 2 Truth table for the inverse law

p ¬p p∨¬p 〈I〉 p∧¬p 〈¬I〉

0 1 1 1 0 0
1 0 1 1 0 0
? ? ? 1 ? 0
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Using the notation 〈¬Z〉 for the statement “measurement
of the Z degree of freedom would give the outcome 1” we
note that

¬〈Z〉 ⇔ 〈¬Z〉, (1)

where the equivalence holds also for indeterminate truth val-
ues. The propositions 〈I〉 and 〈¬I〉 represent tautology and
contradiction, respectively, corresponding to trivial mea-
surements that always have the outcome 0 or 1.

4 Equivalence relations and implication laws

In standard logic there are a number of logical equivalence
relations and implication laws. Some of these are important
properties of logic expressions like reflexivity, symmetry,
and transitivity, and these are retained by conjugate logic
as defined here. However, some equivalences that are com-
mon tools in standard propositional logic no longer hold.
The most prominent example is the “inverse law,” which in
standard propositional logic tells you that (p∨¬p) is a tau-
tology and that (p∧¬p) is a contradiction. These relations
fail because of the indeterminate values involved, see the
relevant truth tables in Table 2. It follows that seemingly
innocuous simplifications are no longer available to us, for
example,

〈ZI, IX〉∨〈¬ZI, IX〉⇔
(
〈ZI〉∨〈¬ZI〉

)
∧〈IX〉 6⇔ 〈IX〉. (2)

It is a simple exercise to verify that for generic propo-
sitions p, q, and r, the following equivalences hold, and do
not hold (see Appendix A for details).

(E1) Double negation ¬¬p⇔ p
(E2) De Morgan’s laws ¬(p∧q)⇔¬p∨¬q

¬(p∨q)⇔¬p∧¬q
(E3) Commutative laws p∧q⇔ q∧ p

p∨q⇔ q∨ p
(E4) Associative laws p∧ (q∧ r)⇔ (p∧q)∧ r

p∨ (q∨ r)⇔ (p∨q)∨ r
(E5) Distributive laws p∧ (q∨ r)⇔ (p∧q)∨ (p∧ r)

p∨ (q∧ r)⇔ (p∨q)∧ (p∨ r)
(E6) Idempotence p∧ p⇔ p

p∨ p⇔ p
(E7) Identity laws p∧〈I〉 ⇔ p

p∨〈¬I〉 ⇔ p
(E8) Domination laws p∧〈¬I〉 ⇔ 〈¬I〉

p∨〈I〉 ⇔ 〈I〉
(E9) Inverse laws p∧¬p 6⇔ 〈¬I〉

p∨¬p 6⇔ 〈I〉
(E10) Absorption laws p∧ (p∨q)⇔ p

p∨ (p∧q)⇔ p
(E11) Implication law p→ q 6⇔ ¬p∨q
(E12) Contrapositive law p→ q⇔¬p→¬q
(E13) Equivalence law p↔ q⇔ (p→ q)∧ (q→ p)

An example of how the inverse law breaks in quantum
mechanics is the double slit experiment, where the propo-
sition p = “the particle passes through the right-hand slit”
corresponds to a dichotomic measurement. If interference is
desired from the experiment, it must be arranged so that p
is indeterminate “?”, in which case p∧¬p is indeterminate
“?” so not a contradiction, and p∨¬p is indeterminate “?”
so not a tautology. We find that this describes the situation
better than the popular-science “the particle passes through
both of the slits (both p and ¬p are true so p∧¬p is true)
and simultaneously none of the slits (both p and ¬p are false
so p∨¬p is false),” which at best is just confusing.

For the inverse laws only the trivial implications remain,
while the implication law does not hold in either direction. A
similar exercise for logical implications gives the following
list, details in Appendix A.

(I1) Modus ponens (p→ q)∧ p⇒ q
(I2) Law of syllogism (p→ q)∧ (q→ r)⇒ (p→ r)
(I3) Modus tollens (p→ q)∧¬q⇒¬p
(I4) Conjunctive simpl. p∧q⇒ p
(I5) Disjunctive ampl. p⇒ p∨q
(I6) Disjunctive syllogism (p∨q)∧¬q 6⇒ p
(I7) Proof by contradiction (¬p→ 〈¬I〉)⇒ p
(I8) Proof by cases (p→ r)∧ (q→ r)⇒ (p∨q)→ r

Most of the standard rules that we use when proving
theorems do still hold, the exception is disjunctive syllo-
gism, that succumbs to the same problem as the implication
law: when q is indeterminate, we cannot draw a conclusion
about p. Note that modus tollens still holds, encompassing a
slightly stronger requirement.

5 Fundamental uncertainty

We now arrive at a crucial point in the construction, the
very reason to include the indeterminate value for the propo-
sitions used. So far, the indeterminate value could corre-
spond to lack of knowledge about the “actual” ontic (exist-
ing) value of the property being measured. But when making
statements about quantum systems, one should take into ac-
count that the standard mathematical description does not
contain such ontic values, but rather, only allows calcula-
tion of probabilities after specifying which property is to be
measured. The debate goes back to the founding fathers of
quantum theory (Einstein, Podolsky, and Rosen 1935; Bohr
1935). We do not wish to take a stance on that particular
issue here, merely describe a truly epistemic logic, that en-
compasses the possibility that indeterminate values “?” not
just denote lack of knowledge but may be fundamentally un-
certain.

In quantum mechanics, not all measurement outcomes
can simultaneously be predicted with certainty (probabil-
ity 1 as EPR 1935 write). Also in quantum-like systems, like
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Spekkens’ toy theory, not all measurement outcomes can be
simultaneously predicted with certainty. It is then natural to
require that in the present conjugate logic that not all propo-
sitions can hold truth values simultaneously. In particular,
the uncertainty principle holds in the form of a bound on
the descriptional power of this conjugate propositional logic
concerning atomic propositions, i.e., propositions on single
degrees of freedom of single systems.

Postulate: Bound on descriptional power
No more than a single atomic proposition can be
true or false for any single system.

We can immediately conclude that some composite
propositions on a single system cannot have a definite truth
value, for example,

〈Z〉Y 〈X〉 ⇔ ? . (3)

This bound on descriptional power corresponds directly to
the uncertainty relation in quantum mechanics (Heisenberg
1927) and to the knowledge balance principle of Spekkens’
toy theory (Spekkens 2007). A set of propositions that can
have truth values simultaneously we will call compatible.
Since not all propositions can have simultaneous truth val-
ues, not all measurements are compatible.

The postulate has consequences on what we can say
about systems in general, for example about correlations be-
tween systems. However, to arrive at a precise statement we
will need transformations between propositions; these cor-
respond to physical operations performed on the physical
systems that we study.

6 Transformations of propositions

Our propositions concern predicted outcomes of measure-
ments performed on physical systems. As such, one of our
systems can be subjected to a range of physical transforma-
tions, the simplest case is 180° rotation of the system around
one of the conjugate coordinate axes. Such a rotation will
conserve the proposition that concerns the axis, but perform
a negation of the other two. It is therefore natural to use the
conserved axis as label, in complete parallel with the stabi-
lizer formalism:

ϕX 〈X〉 ⇔ 〈X〉, ϕX 〈Y 〉 ⇔ 〈¬Y 〉, ϕX 〈Z〉 ⇔ 〈¬Z〉, (4)

ϕY 〈X〉 ⇔ 〈¬X〉, ϕY 〈Y 〉 ⇔ 〈Y 〉, ϕY 〈Z〉 ⇔ 〈¬Z〉, (5)

ϕZ〈X〉 ⇔ 〈¬X〉, ϕZ〈Y 〉 ⇔ 〈¬Y 〉, ϕZ〈Z〉 ⇔ 〈Z〉. (6)

Since these are equivalence relations, the transformations
preserve truth values and compatibility relations. The
“Phase rotation” S comes in two variants. The quantum
phase rotation corresponds to a 90° rotation around the Z
axis, so that

ϕS〈X〉 ⇔ 〈Y 〉, ϕS〈Y 〉 ⇔ 〈¬X〉, ϕS〈Z〉 ⇔ 〈Z〉. (7a)

An alternative transformation is used in Spekkens’ toy the-
ory (Pusey 2012) where the rotation is followed by an inver-
sion along the Z axis,

ϕS〈X〉 ⇔ 〈Y 〉, ϕS〈Y 〉 ⇔ 〈¬X〉, ϕS〈Z〉 ⇔ 〈¬Z〉. (7b)

The effect of this difference is small, note that in both cases
ϕSϕS = ϕZ .

We now arrive at a crucial step in the construction,
the “Hadamard” transformation. This transformation also
comes in two variants with a seemingly small difference in
the transformation itself, but this difference will instead have
very important consequences for the type of model that can
be used to describe the system, we will expand on this below.
The quantum-mechanical Hadamard corresponds to a physi-
cal rotation around an axis 45° between X and Z, giving here
a transformation that interchanges X and Z and inverts Y ,

ϕH〈X〉 ⇔ 〈Z〉, ϕH〈Y 〉 ⇔ 〈¬Y 〉, ϕH〈Z〉 ⇔ 〈X〉. (8a)

The alternative Hadamard transformation (Pusey 2012) used
in Spekkens’ toy theory corresponds to an mirror operation
over the plane spanned by the mentioned axis 45° between X
and Z and the Y axis, i.e., a transformation that interchanges
X and Z and preserves Y ,

ϕH〈X〉 ⇔ 〈Z〉, ϕH〈Y 〉 ⇔ 〈Y 〉, ϕH〈Z〉 ⇔ 〈X〉. (8b)

Finally, the identity transformation ϕI leaves all proposi-
tions unchanged. For both versions of the Phase rotation and
Hadamard, we arrive at a noncommutative group generated
by ϕS and ϕH , since

ϕSϕS = ϕZ , ϕHϕZϕH = ϕX and ϕSϕX ϕ
−1
S = ϕY . (9)

This also generates all single-system propositions from one,
say 〈Z〉.

7 Composite system propositions and transformations

For composite systems, there remains to handle joint mea-
surements, which enable statements about correlation be-
tween measurement outcomes without making statements
about the individual measurement outcomes. The statement
“a joint measurement of the XOR between Z1 and Z2 would
give outcome 0” can be written 〈Z1YZ2〉, or to conform with
standard stabilizer notation 〈ZZ〉, we will use the latter no-
tation below.

To avoid confusion please note that 〈ZZ〉 corresponds to
a joint measurement of a single dichotomic value that gives
the XOR, it does not correspond to individual measure-
ment of two dichotomic values followed by calculation of
the XOR between them, this would be denoted 〈ZI〉Y 〈IZ〉.
These are different procedures, and have different conse-
quences, in particular

〈ZI〉Y 〈IZ〉 ⇒ 〈ZZ〉 but 〈ZI〉Y 〈IZ〉 6⇐ 〈ZZ〉. (10)
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There are some simple equivalences since the conjunction of
a statement about a single system and a statement about its
correlation to another system, is equivalent to a conjunction
of individual statements about the two systems, for example,

〈XI,XX〉 ⇔ 〈XI, IX〉, 〈¬XI,XX〉 ⇔ 〈¬XI,¬IX〉. (11)

This simplification applies to conjunctions. We will now
add another transformation that maps a single proposition
on the outcome of a correlation measurement to a proposi-
tion on some outcome of a single-system measurement. One
natural choice is the CZ (“controlled-Z”), because its action
is symmetric on both subsystems, and can be summarized as

ϕCZ〈IX〉 ⇔ 〈ZX〉, ϕCZ〈IY 〉 ⇔ 〈ZY 〉, ϕCZ〈IZ〉 ⇔ 〈IZ〉,
ϕCZ〈XI〉 ⇔ 〈XZ〉, ϕCZ〈Y I〉 ⇔ 〈Y Z〉, ϕCZ〈ZI〉 ⇔ 〈ZI〉,

ϕCZ〈ZZ〉 ⇔ 〈ZZ〉, ϕCZ〈XX〉 ⇔ 〈YY 〉, ϕCZ〈XY 〉 ⇔ 〈¬Y X〉.
(12)

The motivation for this definition (which (12) should be
viewed as) is the standard gate-based description of a CZ,
that applies a ϕZ transformation on the second system if
“measurement of the Z1 degree of freedom would give the
outcome 1”, and ϕI if “measurement of the Z1 degree of
freedom would give the outcome 0”. It is immediate that
〈II〉, 〈IZ〉, 〈ZI〉, and 〈ZZ〉 are unaffected by ϕZ on either
system. To derive the effect of this map on the proposition
“measurement of X2 would give the outcome 0,” 〈IX〉, we
have{

ϕCZ〈ZI, IX〉 ⇔ ϕII〈ZI, IX〉 ⇔ 〈ZI, IX〉,
ϕCZ〈¬ZI, IX〉 ⇔ ϕIZ〈¬ZI, IX〉 ⇔ 〈¬ZI,¬IX〉.

(13)

Since we are looking for the unique statement that 〈IX〉
maps to, we use the equivalences in Eqn. (11) to obtain{

ϕCZ〈ZI, IX〉 ⇔ 〈ZI,ZX〉,
ϕCZ〈¬ZI, IX〉 ⇔ 〈¬ZI,ZX〉,

(14)

so that, for each measurement outcome of Z1 the map trans-
forms “measurement of X2 would give the outcome 0” into
“measurement of the XOR between Z1 and X2 would give
the outcome 0”. Even though the “inverse law” is not avail-
able, which would have directly given us ϕCZ〈IX〉 ⇔ 〈ZX〉,
this is the only remaining possibility for a well-defined map
ϕCZ . Similar reasoning and the symmetry of CZ gives the
transformation output of the remaining single-system propo-
sitions of (12).

Some further elaboration is needed for the two final
entries in the table. These can be derived from the trans-
formation property that compatible propositions are trans-
formed into compatible propositions, using only three of
the just established single-system transformation outputs.

We know that 〈IX〉 and 〈XI〉 are compatible, and there-
fore 〈ZX〉 ⇔ ϕCZ〈IX〉 and 〈XZ〉 ⇔ ϕCZ〈XI〉 are compati-
ble. Conversely, 〈IX〉 and 〈IY 〉 are incompatible, and there-
fore 〈ZX〉 ⇔ ϕCZ〈IX〉 and 〈ZY 〉 ⇔ ϕCZ〈IY 〉 are incompat-
ible. It is now possible to use single-system transforma-
tions to deduce whether a given pair of two-system proposi-
tions are compatible or not. For example, 〈ZX〉 is compati-
ble with 〈ZI〉, 〈IX〉, 〈XZ〉, 〈YY 〉, 〈XY 〉, 〈Y Z〉, and no other
two-system propositions. It is of particular interest that the
pair {〈ZX〉,〈XZ〉} is only compatible with 〈YY 〉 (and 〈II〉),
which implies that the set {〈IX〉,〈XI〉,〈XX〉} of three pair-
wise compatible propositions must be transformed into the
set {〈ZX〉,〈XZ〉,〈YY 〉} or possibly {〈ZX〉,〈XZ〉,〈¬YY 〉}.
The latter choice will give inconsistencies, for details see
Appendix B.

Both quantum mechanics and Spekkens’ toy theory use
the choice

ϕCZ〈XX〉 ⇔ 〈YY 〉. (15)

Then, the identity ϕSϕZ = ϕSϕSϕS = ϕZϕS fixes

ϕCZ〈XY 〉 ⇔ ϕCZϕIS〈XX〉 ⇔ ϕIS〈YY 〉 ⇔ 〈¬Y X〉 (16)

This finishes the construction of ϕCZ , and enables generat-
ing the whole Clifford group, e.g., ϕCNOT = ϕIHϕCZϕIH .
Furthermore, we can now reproduce the behavior of stabi-
lizer quantum mechanics if the choices of phase rotation and
Hadamard are made as in Eqn. (7a) and (8a); we reproduce
the behavior of Spekkens’ toy theory if the choices are as in
Eqn. (7b) and (8b).

8 Clifford reduction

To transform any non-“identity” proposition on a many-
system correlation into a single-system proposition, it is
enough to follow these steps.

(i) WLOG there is a nontrivial letter at the first position.
Apply ϕS (transforms Y to ¬X) and ϕH (transforms X to
Z) to transform the first position to X and the following
positions to identity I or Z.

(ii) Then use ϕCZ repeatedly to reduce the last n− 1 posi-
tions containing Z to I, to create a string with a single X
at the first position.

We will call this a Clifford reduction of a joint measurement.
As an example,

ϕISIIIS〈XY ZIZY 〉 ⇔ 〈XXZIZX〉
ϕIHIIIH〈XXZIZX〉 ⇔ 〈XZZIZZ〉

ϕCZ12 ϕCZ13 ϕCZ15 ϕCZ16〈XZZIZZ〉 ⇔ 〈XIIIII〉 . (17)

A simultaneous Clifford reduction of two propositions
into single-system propositions can also be performed.
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(i) Reduce the first proposition and perform the same trans-
formations on the second. The first proposition now
reads 〈XI . . . I〉. Either the second proposition has also
been reduced to the form 〈·I . . . I〉 in which case we are
done, or WLOG there is a nontrivial letter at the second
position.

(ii) Reduce the second proposition excluding the very first
index, to put it on the form 〈·XI . . . I〉.

(iii) If the first index reads I, we have two compatible single-
system expressions 〈XII . . . I〉 and 〈IXI . . . I〉. If the first
index reads X , the two propositions can be reduced to
compatible single-system propositions using Eqn. (11).
If the first index reads Y or Z, the two propositions can be
reduced to two incompatible single-system propositions,
using Hadamards on both systems followed by CZ.
Then we are done, and the two propositions have been
reduced to either compatible or incompatible single-
system propositions.

We have now shown that two propositions are always si-
multaneously reducible to one-system propositions. The re-
duction is to two compatible propositions (for different sys-
tems) if and only if the two original propositions are compat-
ible (but not equivalent), and otherwise the reduction gives
two incompatible propositions (for the same system).

The previous discussion shows that if two propositions
are compatible, then they can be simultaneously reduced
to the form 〈XII . . . I〉 and 〈IXI . . . I〉. The same is true for
n compatible propositions: they can be simultaneously re-
duced to contain one X and identities I on the remaining
positions. This is proven by induction as follows. Suppose
that m compatible propositions have been reduced to one-
index X’s on the first m systems using a simultaneous Clif-
ford reduction. If m < n, consider an additional proposition
Pm+1 compatible with the previously reduced propositions,
to which the the same Clifford operations have been applied
as used to reduce the m first propositions. Since Pm+1 is com-
patible with the previously reduced propositions, all indices
i ≤ m only contain I or X , because otherwise Pm+1 would
be incompatible with some Pi, i≤ m. The indices i≤ m that
contain X can now be converted into I using Eqn. (11). Now
reduce Pm+1 excluding the m first indices, putting it on the
form 〈I . . . IXI . . . I〉. This gives us a set of m+ 1 compati-
ble single-system propositions. If m+ 1 = n we are done,
otherwise repeat the process.

If the string length equals n the last step is trivial, reduc-
ing Pn excluding the first n− 1 indices. It follows that the
maximal number of compatible indepdendent propositions
is equal to the string length, since any single system allows
for the truth value of at most one proposition. Furthermore,
any set of compatible propositions can be augmented to size
equal to string length by performing simultaneous Clifford
reduction, and then specifying thruth values for single sys-
tems whose truth values are yet undefined.

9 Predictions

We have already seen that some conjunctions are equivalent
to other conjunctions. This also enables us to make predic-
tions. The equivalence in Eqn. (11) is the basic tool, for ex-
ample, given the proposition 〈XI, IX〉, the measurement of
〈XX〉will lead to no new knowledge; it can be obtained from
the conjunction 〈XI, IX〉 already. It is also true that

〈XZ,ZX〉 ⇔ ϕCZ〈XI, IX〉 ⇒ ϕCZ〈XX〉 ⇔ 〈YY 〉 (18)

which is perhaps less straightforward to see by inspection.
There is a direct link to the stabilizer formalism but we will
not comment more on that link here.

We will call a logical consequence of a conjunction of
propositions a prediction. In general, to obtain all predic-
tions from a collection of propositions, one would need to
perform a joint Clifford reduction, generate the set of pre-
dictions by repeated use of Eqn. (11), and then invert the
Clifford reduction to perform a Clifford expansion. This will
restore the initial collection and create the full set of predic-
tions. As a consequence, a collection of n systems allows
for at most 2n propositions on single systems or correlations
to be simultaneously true. To see why, recall that at most
n independent single-system propositions can be simultane-
ously true. Every pair of single-system or correlation propo-
sitions yields a new single-system or correlation prediction;
thus one arrives at in total 2n propositions.

10 Measurements affect propositions

For a single system, no more than a single atomic propo-
sition can be true or false at the same time. For multiple
systems this generalizes to the statement that only mutu-
ally compatible propositions can simultaneously be known:
at most 2n general propositions of which there are n inde-
pendent ones.

We thus need to specify what happens when some de-
gree of freedom is measured that belongs to an incompatible
proposition. Here we take the approach that any measure-
ment must yield a definite outcome, and that measurement
enables prediction of subsequent measurement outcomes.
Given that there is a descriptional power bound, the ques-
tion is how to incorporate this new prediction. It is reason-
able that any previous proposition that is compatible with the
new one remains, whereas incompatible propositions cannot
coexist with the new proposition and must therefore become
indeterminate.

More formally, suppose that the conjunction P = p1 ∧
·· · ∧ pm holds. Now measure some degree of freedom of
the system. Since by our assumption the outcome enables
prediction of a future measurement outcome, we capture that
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in a proposition q. Denote by

Pq =
∧

pi compatible with q

pi . (19)

After measurement, we have the conjunction

Pq∧q , (20)

and all predictions possible from it. Note that if the measure-
ment gives a proposition q that is a prediction of P, nothing
changes. This captures the behavior of both quantum me-
chanics and Spekkens’ toy theory. We arrive at the follow-
ing consequence of the postulate of bounded descriptional
power:

Consequence: Action of Measurements
A measurement determines the truth value of a
proposition of the system and renders all incom-
patible propositions indeterminate.

11 Contextuality, and noncontextuality

The conjugate logic constructed here allows treatment of
quantum and quantum-like systems within the same for-
malism, capturing not only fundamental uncertainty, but
also transformations between different degrees of freedom.
These transformations are needed for the emergence of
properly quantum behavior, in particular transformations
from knowledge on one system into knowledge about cor-
relation between systems. It is the addition of the latter
type of transformation that makes stabilizer quantum me-
chanics accessible, but it is in fact one of the single-system
transformations that differentiate between properly quan-
tum, and merely quantum-like, behavior. It also makes our
three-valued logic more restrictive. To see this we need to
consider a properly quantum phenomenon, here we will use
that of quantum contextuality of the Peres-Mermin square
(PM, Peres 1993; Mermin 1993):

〈ZI〉 〈IZ〉 〈ZZ〉
〈IX〉 〈XI〉 〈XX〉
〈ZX〉 〈XZ〉 〈YY 〉.

(21)

The rows and columns in this square consist of compatible
propositions. In fact, we can make predictions for the last
item in rows and columns from the preceding items, using
Eqns. (11) and (18),
〈ZI〉∧ 〈IZ〉 ⇒ 〈ZZ〉; 〈IX〉∧ 〈XI〉 ⇒ 〈XX〉;
〈ZI〉∧ 〈IX〉 ⇒ 〈ZX〉; 〈IZ〉∧ 〈XI〉 ⇒ 〈XZ〉;

〈ZX〉∧ 〈XZ〉 ⇒ 〈YY 〉. (22)
The exception is the final column where the derivation of the
prediction (see Sec. 9) involves a Hadamard. The two dif-
ferent Hadamards give different predictions. The quantum-
mechanical Hadamard gives

〈XX ,ZZ〉 ⇔ ϕHI〈ZX ,XZ〉 ⇒ ϕHI〈YY 〉 ⇔ 〈¬YY 〉, (23a)

while Spekkens’ toy theory Hadamard instead gives

〈XX ,ZZ〉 ⇔ ϕHI〈ZX ,XZ〉 ⇒ ϕHI〈YY 〉 ⇔ 〈YY 〉. (23b)

The latter prediction (23b) allows simultaneous assignment
of truth values (other than indeterminate “?”) to all the
propositions in the PM square (21). The former prediction
(23a) does not.

This is known as quantum contextuality (Kochen and
Specker 1967), where the word “context” here refers to
which conjunction a proposition is contained in, e.g., row or
column in the PM square. For a system with the quantum-
mechanical Hadamard transformation, one needs to accept
one of the following alternatives

(i) some proposition in the PM square (21) must be indeter-
minate “?”,

(ii) some proposition in the PM square (21) must possess
different values in different contexts.

The former alternative captures fundamental uncertainty,
while the latter alternative would give a contextual ontic
model. Spekkens’ toy theory, on the other hand, is a noncon-
textual ontic model where propositions (i′) are determinate
and (ii′) possess the same value in different contexts.

12 Conclusions

We have here constructed conjugate logic, that includes not
only an extension to standard logic introducing an inde-
terminate “?” truth value, but also several conjugate de-
grees of freedom for each individual system. Crucially,
it also includes transformations between propositions that
concern different degrees of freedom, and transformations
between single-system propositions and correlation proposi-
tions. The construction is intended to capture not only quan-
tum uncertainty but more properly quantum properties of the
described systems, for which the transformations are crucial.

The introduction of a limitation in predictive power,
and the implied action of measurements, does make the
logic contain quantum-like elements. But it is really the
choice of Hadamard transformation and correlating trans-
formation (CZ) that decide if the behavior is quantum or
merely quantum-like. From the point of view of conjugate
logic, it is these transformations that are responsible for the
emergence of quantum contextuality.

In contrast to quantum logic, the approach presented
here does not force contextuality into the logic through pos-
tulating Hilbert space structure. It is instead a generic frame-
work that allows contextuality to occur, or not occur, as de-
sired. We aim to use this simple language to describe other
quantum and quantum-like phenomena, and hope that the
framework will be useful to others in the same line of work.
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Heisenberg, W. (1927). “Über den anschaulichen Inhalt
der quantentheoretischen Kinematik und Mechanik”.
Z. Physik 43, pp. 172–198. DOI: 10 . 1007 /
BF01397280.

Johansson, Niklas and Jan-Åke Larsson (2019). “Quan-
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A Truth tables for the logic equivalences and logic
implications

Some equivalence laws are very simple to check, such as (E1) and
(E3)–(E8), and the inverse law (E9) is contained in the main text. What
remains are the following.

Table 3 (E2) de Morgan’s laws: ¬(p∧ q) ⇔ ¬p∨¬q; ¬(p∨ q) ⇔
¬p∧¬q

p q p∧q ¬p∨¬q p∨q ¬p∧¬q

0 0 0 1 0 1
0 ? 0 1 ? ?
0 1 0 1 1 0
? 0 ? ? ? ?
? ? ? ? ? ?
? 1 ? ? 1 0
1 0 0 1 1 0
1 ? ? ? 1 0
1 1 1 0 1 0

Table 4 (E10) absorption laws: p∨ (p∧q)⇔ p; p∧ (p∨q)⇔ p

p q p∧q p∨ (p∧q) p∨q p∧ (p∨q)

0 0 0 0 0 0
0 ? 0 0 ? 0
0 1 0 0 1 0
? 0 0 ? ? ?
? ? ? ? ? ?
? 1 ? ? 1 ?
1 0 0 1 1 1
1 ? ? 1 1 1
1 1 1 1 1 1

Table 5 (E11) the implication law: (p→ q) 6⇔ (¬p∨q)

p q p→ q ¬p∨q (p→ q)→ (¬p∨q) (p→ q)← (¬p∨q)

0 0 1 1 1 1
0 ? 1 1 1 1
0 1 1 1 1 1
? 0 0 ? 1 ?
? ? 1 ? ? 1
? 1 1 1 1 1
1 0 0 0 1 1
1 ? 0 ? 1 ?
1 1 1 1 1 1

Table 6 (E12) the contrapositive law: p→ q⇔¬q→¬p

p q p→ q ¬p ¬q ¬q→¬p

0 0 1 1 1 1
0 ? 1 1 ? 1
0 1 1 1 0 1
? 0 0 ? 1 0
? ? 1 ? ? 1
? 1 1 ? 0 1
1 0 0 0 1 0
1 ? 0 0 ? 0
1 1 1 0 0 1

Table 7 (E13) the equivalence law: p↔ q⇔ (p→ q)∧ (p← q)

p q p↔ q p→ q p← q

0 0 1 1 1
0 ? 0 1 0
0 1 0 1 0
? 0 0 0 1
? ? 1 1 1
? 1 0 1 0
1 0 0 0 1
1 ? 0 0 1
1 1 1 1 1

Table 8 (I1) Modus ponens: (p→ q)∧ p⇒ q

p q p→ q (p→ q)∧ p [(p→ q)∧ p]→ q

0 0 1 0 1
0 ? 1 0 1
0 1 1 0 1
? 0 0 0 1
? ? 1 ? 1
? 1 1 ? 1
1 0 0 0 1
1 ? 0 0 1
1 1 1 1 1
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Table 9 (I2) law of syllogism: (p→ q)∧ (q→ r)⇒ p→ r

p q r p→ q q→ r (p→ q)∧ (q→ r) p→ r

0 0 0 1 1 1 1
0 0 ? 1 1 1 1
0 0 1 1 1 1 1
0 ? 0 1 0 0 1
0 ? ? 1 1 1 1
0 ? 1 1 1 1 1
0 1 0 1 0 0 1
0 1 ? 1 0 0 1
0 1 1 1 1 1 1
? 0 0 0 1 0 0
? 0 ? 0 1 0 1
? 0 1 0 1 0 1
? ? 0 1 0 0 0
? ? ? 1 1 1 1
? ? 1 1 1 1 1
? 1 0 1 0 0 0
? 1 ? 1 0 0 1
? 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 ? 0 1 0 0
1 0 1 0 1 0 0
1 ? 0 0 0 0 0
1 ? ? 0 1 0 0
1 ? 1 0 1 0 0
1 1 0 1 0 0 1
1 1 ? 1 0 0 1
1 1 1 1 1 1 1

Table 10 (I3) Modus tollens: (p→ q)∧¬q⇒¬p

p q p→ q (p→ q)∧¬q [(p→ q)∧¬q]→¬p

0 0 1 1 1
0 ? 1 ? 1
0 1 1 0 1
? 0 0 0 1
? ? 1 ? 1
? 1 1 0 1
1 0 0 0 1
1 ? 0 0 1
1 1 1 0 1

Table 11 (I4) Conjunctive simplification: p∧q⇒ p; and (I5) Disjunc-
tive strengthening: p⇒ p∨q

p q p∧q (p∧q)→ p p∨q p→ (p∨q)

0 0 0 1 0 1
0 ? 0 1 ? 1
0 1 0 1 1 1
? 0 0 1 ? 1
? ? ? 1 ? 1
? 1 ? 1 1 1
1 0 0 1 1 1
1 ? ? 1 1 1
1 1 1 1 1 1

Table 12 (I6) Disjunctive syllogism: (p∨q)∧¬q 6⇒ p

p q p∨q (p∨q)∧¬q [(p∨q)∧¬q]→ p

0 0 0 0 1
0 ? ? ? ?
0 1 1 0 1
? 0 ? ? 1
? ? ? ? 1
? 1 1 0 1
1 0 1 1 1
1 ? 1 ? 1
1 1 1 0 1

Table 13 (I7) proof by contradiction: (¬p→ 〈¬I〉)⇒ p

p ¬p→ 〈¬I〉 (¬p→ 〈¬I〉)→ p

0 0 1
? 0 1
1 1 1

Table 14 (I8) proof by cases: (p→ r)∧ (q→ r)⇒ (p∨q)→ r

p q r p→ r q→ r (p→ r)∧ (q→ r) (p∨q)→ r

0 0 0 1 1 1 1
0 0 ? 1 1 1 1
0 0 1 1 1 1 1
0 ? 0 1 0 0 0
0 ? ? 1 1 1 1
0 ? 1 1 1 1 1
0 1 0 1 0 0 0
0 1 ? 1 0 0 0
0 1 1 1 1 1 1
? 0 0 0 1 0 0
? 0 ? 1 1 1 1
? 0 1 1 1 1 1
? ? 0 0 0 0 0
? ? ? 1 1 1 1
? ? 1 1 1 1 1
? 1 0 0 0 0 0
? 1 ? 1 0 0 0
? 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 ? 0 1 0 0
1 0 1 1 1 1 1
1 ? 0 0 0 0 0
1 ? ? 0 1 0 0
1 ? 1 1 1 1 1
1 1 0 0 0 0 0
1 1 ? 0 0 0 0
1 1 1 1 1 1 1
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B Choice of CZ transformation

This appendix contains a derivation of an inconsistency that would
arise if the CZ transformation is chosen so that

ϕ̃CZ〈XX〉 ⇔ 〈¬YY 〉, (24)

where the tilde is used to distinguish the transformation used in the
main text from the one considered here. The inconsistency arises when
making predictions from the conjunction 〈¬YY I,¬IYY 〉. To generate
predictions we first use the procedure of Section 9. This starts with the
simultaneous Clifford reduction

〈¬YY I,¬IYY 〉 ⇔ ϕSSS〈¬XXI,¬IXX〉
⇔ ϕSSSϕIHH〈¬XZI,¬IZZ〉
⇔ ϕSSSϕIHH ϕ̃CZ12 〈¬XII,¬IZZ〉
⇔ ϕSSSϕIHH ϕ̃CZ12 ϕIHI〈¬XII,¬IXZ〉
⇔ ϕSSSϕIHH ϕ̃CZ12 ϕIHI ϕ̃CZ23 〈¬XII,¬IXI〉.

(25)

We have the simple prediction

〈¬XII,¬IXI〉 ⇒ 〈XXI〉. (26)

Clifford expansion now gives

ϕ
−1
SSSϕIHH ϕ̃CZ12 ϕIHI ϕ̃CZ23 〈XXI〉

⇔ ϕ
−1
SSSϕIHH ϕ̃CZ12 ϕIHI〈XXZ〉

⇔ ϕ
−1
SSSϕIHH ϕ̃CZ12 〈XZZ〉

⇔ ϕ
−1
SSSϕIHH〈XIZ〉

⇔ ϕ
−1
SSS〈XIX〉

⇔ 〈Y IY 〉,

(27)

which gives the prediction

〈¬YY I,¬IYY 〉 ⇒ 〈Y IY 〉. (28)

A second prediction from 〈¬YY I,¬IYY 〉 starts from

〈XXI, IXX〉 ⇒ 〈XIX〉, (29)

that can also be obtained as above. We now apply three ϕ̃CZ transfor-
mations to reach

〈¬YY I,¬IYY 〉 ⇔ ϕ̃CZ12 ϕ̃CZ23 ϕ̃CZ13 〈XXI, IXX〉
⇒ ϕ̃CZ12 ϕ̃CZ23 ϕ̃CZ13 〈XIX〉 ⇔ 〈¬Y IY 〉.

(30)

Using ϕ̃CZ results in two predictions (28) and (30), so that
〈¬YY I,¬IYY 〉 ⇒ 〈Y IY,¬Y IY 〉. While 〈Y IY,¬Y IY 〉 is never true, the
Clifford reduction (25) tells us that the left-hand side 〈¬YY I,¬IYY 〉
can be reduced to compatible propositions for two different systems,
and therefore can be simultaneously true. This shows that ϕ̃CZ gives an
inconsistency.

Using ϕCZ instead of ϕ̃CZ does not change the prediction in
Eqn. (28), but gives

〈¬YY I,¬IYY 〉 ⇔ ϕCZ12 ϕCZ23 ϕCZ13 〈¬XXI,¬IXX〉
⇒ ϕCZ12 ϕCZ23 ϕCZ13 〈XIX〉 ⇔ 〈Y IY 〉.

(31)

For this choice there is no inconsistency.
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